Coordinate Geometry

Straight Line
JEE-MAINS (PREVIOUS YEAR)

MCQ-Single Correct

1. Let k be an integer such that the triangle with vertices $(k,-3 k),(5, k)$ and $(-k, 2)$ has area 28 sq units. Then the orthocentre of this triangle is at the point :
(1) $\left(2,-\frac{1}{2}\right)$
(3) $\left(1,-\frac{3}{4}\right)$
(2)
$\left(1, \frac{3}{4}\right)$
(4) $\left(2, \frac{1}{2}\right)$
[2017]
2. Two sides of a rhombus are along the lines, $x-y+1=0$ and $7 x-y-5=0$. If its diagonals intersect at $(-1,-2)$, then which one of the following is a vertex of this rhombus?
(1) $(-3,-8)$
(2) $\left(\frac{1}{3},-\frac{8}{3}\right)$
(3) $\left(-\frac{10}{3},-\frac{7}{3}\right)$
(4) $(-3,-9)$
[2016]
3. Locus of the image of the point $(2,3)$ in the line $(2 x-3 y+4)+k(x-2 y+3)=0, k \in R$, is a :
(1) straight line parallel to y-axis
(2) circle of radius $\sqrt{2}$.
(3) circle of radius $\sqrt{3}$
(4) straight line parallel to x-axis.
[2015]
4. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d be non-zero numbers. If the point of intersection of the lines $4 a x+2 a y+c=0$ and $5 b x+2 b y+d=0$ lies in the fourth quadrant and is equidistant from the two axes then
(1) $2 \mathrm{bc}-3 \mathrm{ad}=0$
(2) $2 b c+3 a d=0$
(3) $3 b c-2 a d=0$
(4) $3 b c+2 a d=0$
[2014]
5. Let PS be the median of the triangle with vertices $P(2,2), Q(6,-1)$ and $R(7,3)$. The equation of the line passing through $(1,-1)$ and parallel to PS is
(1) $4 x-7 y-11=0$
(2) $2 x+9 y+7=0$
(3) $4 x+7 y+3=0$
(4) $2 x-9 y-11=0$
[2014]
6. The x-coordinate of the incentre of the triangle that has the coordinates of mid points of its sides as $(0,1)(1,1)$ and $(1,0)$ is

Mathematics for IIT-JEE by MANISH KALIA (B.Tech Delhi College Of Engineering)

MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

(1) $2-\sqrt{2}$
(2) $1+\sqrt{2}$
(3) $1-\sqrt{2}$
(4) $2+\sqrt{2}$
[2013]
7. A ray of light along $x+\sqrt{3} y=\sqrt{3}$ gets reflected upon reaching x-axis, the equation of the reflected rays is
(1) $\sqrt{3} y=x-\sqrt{3}$
(2) $y=\sqrt{3} x-\sqrt{3}$
(3) $\sqrt{3} y=x-1$
(4) $y=x+\sqrt{3}$
[2013]
8. If the line $2 x+y=k$ passes through the point which divides the line segment joining the points $(1,1)$ and $(2,4)$ in the ration $3: 2$, then k equal
(1) 6
(2) $11 / 5$
(3) $29 / 5$
(4) 5
[2012]
9. A line is drawn through the point $(1,2)$ to meet the coordinate axes at P and Q such that it forms a triangle $O P Q$, where O is the origin. If the area of the triangle $O P Q$ is least, then the slope of the line $P Q$ is
(1) -2
(2) $-1 / 2$
(3) $-1 / 4$
(4) -4
[2012]
10. The lines $x+y=|a|$ and $a x-y=1$ intersect each other in the first quadrant. Then the set of all possible values of a is the interval
(1) $(-1, \infty)$
(2) $(-1,1]$
(3) $(0, \infty)$
(4) $[1, \infty)$
[2011]
11. If $\mathrm{A}(2,-3)$ and $\mathrm{B}(-2,1)$ are two vertices of a triangle and third vertex moves on the line
$2 x+3 y=9$, then the locus of the centroid of the triangle is
(1) $2 x+3 y=3$
(2) $2 x-3 y=1$
(3) $x-y=1$
(4) $2 x+3 y=1$
[2011]
12. The line L given by $\frac{x}{5}+\frac{y}{b}=1$ passes through the point $(13,32)$. The line K is parallel to L and has the equation $\frac{x}{c}+\frac{y}{3}=1$. Then the distance between L and K is
(1) $\sqrt{17}$
(2) $\frac{17}{\sqrt{15}}$
(3) $\frac{23}{\sqrt{17}}$
(4) $\frac{23}{\sqrt{15}}$
[2010]

MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

13. Three distinct points A, B and C are given in the 2-dimensional coordinate plane such that the ratio of the distance of any one of them from the point $(1,0)$ to the distance from the point $(-1,0)$ is equal to $\frac{1}{3}$. Then the circumcentre of the triangle $A B C$ is at the point
(1) $(0,0)$
(2) $\left(\frac{5}{4}, 0\right)$
(3) $\left(\frac{5}{2}, 0\right)$
(4) $\left(\frac{5}{3}, 0\right)$
14. The lines $p\left(p^{2}+1\right) x-y+q=0$ and $\left(p^{2}+1\right)^{2} x+\left(p^{2}+1\right) y+2 q=0$ are perpendicular to a common line for
(1) no value of p
(2) exactly one value of p
(3) exactly two values of p
(4) more than two values of p
[2009]
15. The perpendicular bisector of the line segment joining $P(1,4)$ and $Q(k, 3)$ has y-intercept -4. Then a possible value of k is
(1) 1
(2) 2
(3) -2
(4) -4
[2008]
16. A straight line through the point $A(3,4)$ is such that its intercept between the axes is bisected at A. Its equation is
(1) $x+y=7$
(2) $3 x-4 y+7=0$
(3) $4 x+3 y=24$
(4) $3 x+4 y=25$
[2006]
17. The two lines $x=a y+b, z=c y+d$; and $x=a^{\prime} y+b^{\prime}, z=c^{\prime} y+d^{\prime}$ are perpendicular to each other if
(1) $a a^{\prime}+c c^{\prime}=-1$
(2) $a a^{\prime}+c c^{\prime}=1$
(3) $\frac{a}{a^{\prime}}+\frac{c}{c^{\prime}}=-1$
(4) $\frac{a}{a^{\prime}}+\frac{c}{c^{\prime}}=1$
[2006]
18. If $\left(a, a^{2}\right)$ falls inside the angle made by the lines $y=\frac{x}{2}, x>0$ and $y=3 x, x>0$, then a belongs to
(1) $\left(0, \frac{1}{2}\right)$
(2) $(3, \infty)$
(3) $\left(\frac{1}{2}, 3\right)$
(4) $\left(-3,-\frac{1}{2}\right)$
[2006]
19. The line parallel to the x-axis and passing through the intersection of the lines
$a x+2 b y+3 b=0$ and $b x-2 a y-3 a=0$, where $(a, b) \neq(0,0)$ is

MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

(1) below the x-axis at a distance of $\frac{3}{2}$ from it
(2) below the x-axis at a distance of $\frac{2}{3}$ from it
(3) above the x-axis at a distance of $\frac{3}{2}$ from it
(4) above the x-axis at a distance of $\frac{2}{3}$ from it
20. If non-zero numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in H.P., then the straight line $\frac{x}{a}+\frac{y}{b}+\frac{1}{c}=0$ always passes through a fixed point. The point is
(1) $(-1,2)$
(2) $(-1,-2)$
(3) $(1,-2)$
(4) $\left(1,-\frac{1}{2}\right)$
[2005]
21. If a vertex of a triangle is $(1,1)$ and the mid-points of two sides through this vertex are $(-1,2)$ and $(3,2)$, then the centroid of the triangle is
(1) $\left(-1, \frac{7}{3}\right)$
(2) $\left(-\frac{1}{3}, \frac{7}{3}\right)$
(1) $\left(1, \frac{7}{3}\right)$
(2) $\left(\frac{1}{3}, \frac{7}{3}\right)$
[2005]
22. If the pair of lines $a x^{2}+2(a+b) x y+b y^{2}=0$ lie along diameters of a circle and divide the circle into four sectors such that the area of one of the sectors is thrice the areas of another sector then
(1) $3 a^{2}-10 a b+3 b^{2}=0$
(2) $3 a^{2}-2 a b+3 b^{2}=0$
(3) $3 a^{2}+10 a b+3 b^{2}=0$
(4) $3 a^{2}+2 a b+3 b^{2}=0$
[2005]
23. Let $A(2,-3)$ and $B(-2,1)$ be vertices of a triangle $A B C$. If the centroid of this triangle moves on the line $2 x+3 y=1$, then the locus of the vertex C is the line
(1) $2 x+3 y=9$
(2) $2 x-3 y=7$
(3) $3 x+2 y=5$
(4) $3 x-2 y=3$
[2004]

MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

24. The equation of the straight line passing through the point $(4,3)$ and making intercepts on the co-ordinate axes whose sum is -1 is
(1) $\frac{x}{2}+\frac{y}{3}=-1$ and $\frac{x}{-2}+\frac{y}{1}=-1$
(2) $\frac{x}{2}-\frac{y}{3}=-1$ and $\frac{x}{-2}+\frac{y}{1}=-1$
(3) $\frac{x}{2}+\frac{y}{3}=1$ and $\frac{x}{2}+\frac{y}{1}=1$
(3) $\frac{x}{2}-\frac{y}{3}=1$ and $\frac{x}{-2}+\frac{y}{1}=1$
[2004]
25. If the sum of the slopes of the lines given by $x^{2}-2 c x y-7 y^{2}=0$ is four times their product, then c has the value
(1) 1
(2) -1
(3) 2
(4) -2
[2004]
26. If one of the lines given by $6 x^{2}-x y+4 c y^{2}=0$ is $3 x+4 y=0$, then c equals
(1) 1
(2) -1
(3) 3
(4) -3
[2004]
27. If the equation of the locus of a point equidistant from the points $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ is $\left(a_{1}-a_{2}\right) x+\left(b_{1}-b_{2}\right) y+c=0$, then the value of ' c ' is
(1) $\frac{1}{2}\left(a_{2}^{2}+b_{2}^{2}-a_{1}^{2}-b_{1}^{2}\right)$
(2) $a_{1}^{2}+a_{2}^{2}+b_{1}^{2}-b_{2}^{2}$
(3) $\frac{1}{2}\left(a_{1}^{2}+a_{2}^{2}-b_{1}^{2}-b_{2}^{2}\right)$
(4) $\sqrt{a_{1}{ }^{2}+b_{1}^{2}-a_{2}{ }^{2}-b_{2}{ }^{2}}$
[2003]
28. Locus of centroid of the triangle whose vertices are $(a \cos t, a \sin t),(b \sin t,-b \cos t)$ and $(1,0)$, where t is a parameter , is
(1) $(3 x-1)^{2}+(3 y)^{2}=a^{2}-b^{2}$
(2) $(3 x-1)^{2}+(3 y)^{2}=a^{2}+b^{2}$
(3) $(3 x+1)^{2}+(3 y)^{2}=a^{2}+b^{2}$
(4) $(3 x+1)^{2}+(3 y)^{2}=a^{2}-b^{2}$
[2003]

MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

29. If the pair of straight lines $x^{2}-2 p x y-y^{2}=0$ and $x^{2}-2 q x y-y^{2}=0$ be such that each pair bisects the angle between the other pair, then
(1) $p=q$
(2) $p=-q$
(3) $p q=1$
(4) $p q=-1$
[2003]
30. A square of side a lies above the x-axis and has one vertex at the origin. The side passing through the origin makes an angle $\alpha\left(0<\alpha<\frac{\pi}{4}\right)$ with the positive direction of x -axis. The equation of its diagonal not passing through the origin is
(1) $y(\cos \alpha-\sin \alpha)-x(\sin \alpha-\cos \alpha)=a$
(2) $y(\cos \alpha+\sin \alpha)+x(\sin \alpha-\cos \alpha)=a$
(3) $y(\cos \alpha+\sin \alpha)+x(\sin \alpha+\cos \alpha)=a$
(4) $y(\cos \alpha+\sin \alpha)+x(\cos \alpha-\sin \alpha)=a$
31. If the pair of lines $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ intersect on the y-axis then
(1) $2 f g h=b g^{2}+c h^{2}$
(2) $b g^{2} \neq c h^{2}$
(3) $\mathrm{abc}=2 \mathrm{fgh}$
(4) none of these
[2002]
32. Lines represented by $3 a x^{2}+5 x y+\left(a^{2}-2\right) y^{2}=0$ are \perp to each other for
(1) two values of a
(2) $\forall a$
(3) for one value of a
(4) for no values of a
[2002]
33. Locus of mid-point of the portion between the axes of $x \cos \alpha+y \sin \alpha=p$, where p is constant, is
(1) $x^{2}+y^{2}=\frac{4}{p^{2}}$
(2) $x^{2}+y^{2}=4 p^{2}$

MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

(3) $\frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{2}{p^{2}}$
(4) $\frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{4}{p^{2}}$
[2002]
34. A triangle with vertices $(4,0),(-1,-1),(3,5)$ is
(1) isosceles and right angled
(3) right angled but not isosceles
(2) isosceles but not right angled
(4) neither right angled nor isosceles
[2002]

