MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

Sets and Relations

JEE-MAINS (PREVIOUS YEAR)

MCQ-Single Correct

1. Let A and B be two sets containing four and two elements respectively. Then the number of subsets of the set $A \times B$, each having at least three elements is:
(1) 256
(2) 275
(3) 510
(4) 219
[2015]
2. If $X=\left\{4^{n}-3 n-1: n \in N\right\}$ and $Y=\{9(n-1): n \in N\}$, where N is the set of natural numbers, then $X \cup Y$ is equal to
(1) N
(2) $Y-X$
(3) X
(4) Y
[2014]
3. Let A and B be two sets containing 2 elements and 4 elements respectively. The number of subsets of $A \times B$ having 3 or more elements is
(1) 220
(2) 219
(3) 211
(4) 256
[2013]
4. Let S be a non-empty subset of R. Consider the following statement:

P: There is a rational number $x \in S$ such that $\mathrm{x}>0$.
Which of the following statements is the negation of the statement P?
(1) There is no rational number $x \in S$ such that $x \leq 0$
(2) Every rational number $x \in S$ satisfies $x \leq 0$
(3) $x \in S$ and $x \leq 0 \Rightarrow x$ is not rational
(4) There is a rational number $x \in S$ such that $x \leq 0$
[2010]
5. Consider the following relations:
$R=\{(x, y) \mid x, y$ are real numbers and $x=w y$ for some rational number $w\} ;$

Mathematics for IIT-JEE by MANISH KALIA (B.Tech Delhi College Of Engineering)
PH:9878146388,9464551253|www.iitmathematics.com,www.alphaclasses.com

MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

$\mathrm{S}=\left\{\left.\left(\frac{m}{n}, \frac{p}{q}\right) \right\rvert\, m, n, p\right.$ and q are int egers such $n, q \neq 0$ and $\left.q m=p n\right\}$. Then
(1) neither R nor S is an equivalence relation
(2) S is an equivalence relation but R is not an equivalence relation
(3) R and S both are equivalence relations
(4) R is an equivalence relation but S is not an equivalence relation
6. If A, B nd C are three sets such that $A \cap B=A \cap C$ and $A \cup B=A \cup C$, then
(1) $A=B$
(2) $A=C$
(3) $B=C$
(4) $A \cap B=\phi$
[2009]
7. Let R be the real line. Consider the following subsets of the plane $R \times R$
$S=\{(x, y): y=x+1$ and $0<x<2\}, T=\{(x, y): x-y$ is an integer $\}$. Which one of the following is true?
(1) neither S nor T is an equivalence relation on R
(2) Both S and T are equivalence relations on R
(3) S is an equivalence relation on R but T is not
(4) T is an equivalence relation on R but S is not
[2008]
8. Let W denote the words in the English dictionary. Define the relation R by :
[2006]
$R=\{(x, y) \varepsilon W \times W \mid$ the words x and y have at least one letter in common $\}$. Then R is
(1) Not reflexive, symmetric and transitive
(2) reflexive, symmetric and not transitive
(3) reflexive, symmetric and transitive
(4) reflexive, not symmetric and transitive
9. Let $R=\{(3,3),(6,6),(9,9),(12,12),(6,12),(3,9),(3,12),(3,6)\}$ be a relation on the set $A=\{3,6,9,12\}$ be a relation on the set $A=\{3,6,9,12\}$. The relation is
(1) reflexive and transitive only
(2) reflexive only
(3) an equivalence relation
(4) reflexive and symmetric only[2005]
10. Let $R=\{(1,3),(4,2),(2,4),(2,3),(3,1)\}$ be a relation on the set $A=\{1,2,3,4\}$. The relation R is
(1) a function
(2) reflexive
(3) not symmetric
(4) transitive
[2004]
Mathematics for IIT-JEE by MANISH KALIA (B.Tech Delhi College Of Engineering)
PH:9878146388,9464551253|www.iitmathematics.com,www.alphaclasses.com

MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

