MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

Quadratic Equations

JEE-MAINS (PREVIOUS YEAR)

MCQ-Single Correct

1. If, for a positive integer n, the quadratic equation, $x(x+1)+(x+1)(x+2)+\ldots .+(x+\overline{n-1})(x+n)$ $=10 n$ has two consequitive integral solutions, then n is equal to :
(1) 12
(2) 9
(3) 10
(4) 11
[2017]
2. The sum of all real values of x satisfying the equation $\left(x^{2}-5 x+5\right)^{x^{2}+4 x-60}=1$
(1) -4
(2) 6
(3) 5
(4) 3
[2016]
3. Let α and β be the roots of equation $x^{2}-6 x-2=0$. If $a_{n}=\alpha^{n}-\beta^{n}$, for $n \geq 1$, then the value of $\frac{a_{10}-2 a_{8}}{2 a_{9}}$ is equal to :
(1) -6
(2) 3
(3) -3
(4) 6
[2015]
4. Let α and β be the roots of the equation $p x^{2}+q x+r=0, p \neq 0$. If p, q, r are in A.P. and $\frac{1}{\alpha}+\frac{1}{\beta}=4$, then the value of $|\alpha-\beta|$ is
(1) $\frac{\sqrt{61}}{9}$
(2) $\frac{2 \sqrt{17}}{9}$
(3) $\frac{\sqrt{34}}{9}$
(4) $\frac{2 \sqrt{13}}{9}$
[2014]
5. If the equations $x^{2}+2 x+3=0$ and $a x^{2}+b x+c=0, a, b, c \in R$, have a common root, then $a: b$: c is
(1) $3: 2: 1$
(2) $1: 3: 2$
(3) $3: 1: 2$
(4) $1: 2: 3$
[2013]
6. The equation $e^{\sin x}-e^{-\sin x}-4=0$ has
(1) infinite number of real roots
(2) exactly one real root
(3) no real roots
(4) exactly four real roots.
[2012]
7. Let for $a \neq a_{1} \neq 0, f(x)=a x^{2}+b x+c, g(x)=a_{1} x^{2}+b_{1} x+c_{1}$ and $p(x)=f(x)-g(x)$. If, $p(x)=0$ only for $x=-1$ and $p(-2)=2$, then the value of $p(2)$ is
(1) 6
(2) 18
(3) 3
(4) 9
[2011]
8. Sachin and Rahul attempted to solve a quadratic equation. Sachin made a mistake in writing down the constant term and ended up in roots (4,3). Rahul made a mistake in writing down coefficient of x to get roots $(3,2)$. The correct roots of equation are
(1) $-6,-1$
(2) $-4,-3$
(3) 6,1
(4) 4,3
[2011]
9. If α and β are the roots of the equation $x^{2}-x+1=0$, then $\alpha^{2009}+\beta^{2009}=$
(1) -1
(2) 1
(3) 2
(4) -2
[2010]
10. If the roots of the equation $b x^{2}+c x+a=0$ be imaginary, then for all real values of x, the expression $3 b^{2} x^{2}+6 b c x+2 c^{2}$ is
(1) greater than $4 a b$
(2) less than 4ab
(3) greater than -4ab
(4) less than -4ab
[2009]
11. The quadratic equations $x^{2}-6 x+a=0$ and $x^{2}-c x+6=0$ have one root in common. The other roots of the first and second equations are integers in the ratio $4: 3$. Then the common root is
(1) 1
(2) 4
(3) 3
(4) 2
[2008]

Mathematics for IIT-JEE by MANISH KALIA (B.Tech Delhi College Of Engineering)

MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

12. If the roots of the quadratic equation $\mathrm{x}^{2}+\mathrm{px}+\mathrm{q}=0$ are $\tan 30^{\circ}$ and $\tan 15^{\circ}$, respectively then the value of $2+q-p$ is
(1) 2
(2) 3
(3) 0
(4) 1
[2006]
13. All the values of m for which both roots of the equations $x^{2}-2 m x+m^{2}-1=0$ are greater than -2 but less than 4 , lie in the interval
(1) $-2<m<0$
(2) $m>3$
(3) $-1<m<3$
(4) $1<m<4$
[2006]
14. If x is real, the maximum value of $\frac{3 x^{2}+9 x+17}{3 x^{2}+9 x+7}$ is
(1) $1 / 4$
(2) 41
(3) 1
(4) $17 / 7$
[2006]
15. The value of α for which the sum of the square of roots of the $x^{2}-(a-2) x-a-1=0$ assume the least value is
(1) 1
(2) 0
(3) 3
(4) 2
[2005]
16. If roots of the equation $x^{2}-b x+c=0$ be the consecutive integers, then $b^{2}-4 c$ equals
(1) -2
(2) 3
(3) 2
(4) 1
[2005]
17. If both the roots of the quadratic equation $x^{2}-2 k x+k^{2}+k-5=0$ are less than 5 , then k lies in the interval
(1) $(5,6]$
(2) $(6, \infty)$
(3) $(-\infty, 4)$
(4) $[4,5]$
[2005]
18. If $(1-p)$ is a root of quadratic equation $x^{2}+p x+(1-p)=0$, then its roots are
(1) 0,1
(2) $-1,2$

MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

(3) $0,-1$
(4) $-1,1$
[2004]
19. If one root of the equation $\mathrm{x} 2+\mathrm{px}+12=0$ is 4 , while the equation $\mathrm{x} 2+\mathrm{px}+\mathrm{q}=0$ has equal roots, then the value of ' q ' is
(1) $\frac{49}{4}$
(2) 4
(3) 3
(4) 12
[2004]
20. If the sum of the roots of the quadratic equation $a x^{2}+b x+c=0$ is equal to the sum of the squares of their reciprocals, then $\frac{a}{c}, \frac{b}{a}$ and $\frac{c}{b}$ are in
(1) arithmetic progression
(2) geometric progression
(3) harmonic progression
(4) arithmetic-geometric-progression
[2003]
21. The number of real solutions of the equation $x^{2}-3|x|+2=0$ is
(1) 2
(2) 4
(3) 1
(4) 3
[2003]
22. The value of ' a ' for which one root of the quadratic equation $\left(a^{2}-5 a+3\right) x^{2}+(3 a-1) x+2=0$ is twice as large as the other, is
(1) $2 / 3$
(2) $-2 / 3$
(3) $1 / 3$
(4) $-1 / 3$
[2003]
23. If $\alpha \neq \beta$ but $\alpha^{2}=5 \alpha-3$ and $\beta^{2}=5 \beta-3$, then the equation whose roots are $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ is
(1) $3 x^{2}-25 x+3=0$
(2) $x^{2}+5 x-3=0$
(3) $x^{2}-5 x+3=0$
(4) $3 x^{2}-19 x+3=0$
24. Difference between the corresponding roots of $x^{2}+a x+b=0$ and $x^{2}+b x+a=0$ is same and $a \neq$ b, then
(1) $a+b+4=0$
(2) $a+b-4=0$

Mathematics for IIT-JEE by MANISH KALIA (B.Tech Delhi College Of Engineering)

MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

(3) $a-b-4=0$
(4) $a-b+4=0$
[2002]
25. If p and q are the roots of the equation $x^{2}+p x+q=0$, then
(1) $p=1, q=-2$
(2) $p=0, q=1$
(3) $p=-2, q=0$
(4) $p=-2, q=1$
[2002]
26. Product of real roots of the equation $t^{2} x^{2}+|x|+9=0$
(1) is always positive
(3) does not exist
(2) is always negative
(4) none of these

