Quadratic Equations

JEE-MAINS (PREVIOUS YEAR)

MCQ-Single Correct

CLASSES

5. If the equations $x^2 + 2x + 3 = 0$ and $ax^2 + bx + c = 0$, a, b, c ϵ R, have a common root, then a : b : c is

(1) 3:2:1 (2) 1:3:2 Mathematics for IIT-JEE by MANISH KALIA (B.Tech Delhi College Of Engineering) PH:9878146388,9464551253 | www.iitmathematics.com,www.alphaclasses.com SCO 43,TOP FLOOR,SECTOR 41-D,CHANDIGARH

	(3) 3:1:2	(4) 1:2:3	[2013]
6.	The equation $e^{\sin x} - e^{-\sin x} - 4 = 0$ has		
	(1) infinite number of real roots	(2) exactly one real root	
	(3) no real roots	(4) exactly four real roots.	[2012]
7.	Let for $a \neq a_1 \neq 0$, $f(x) = ax^2 + bx + c$, $g(x) = a_1x^2 + b_1x + c_1$ and $p(x) = f(x) - g(x)$. If, $p(x) = 0$ only for $x = -1$ and $p(-2) = 2$, then the value of $p(2)$ is		
	(1) 6	(2) 18	
	(3) 3	(4) 9	[2011]
8.	Sachin and Rahul attempted to solve a quadratic equation. Sachin made a mistake in writing down the constant term and ended up in roots (4,3) . Rahul made a mistake in writing down coefficient of x to get roots (3,2). The correct roots of equation are		
	(1) -6,-1	(2) -4,-3	
	(3) 6,1	(4) 4,3	[2011]
9.	If α and β are the roots of the equation $x^2 - x^2$	$\alpha^{+1} = 0$, then $\alpha^{2009} + \beta^{2009} =$	
	(1) -1	(2) 1	
	(3) 2	(4) -2	[2010]
10.	If the roots of the equation $bx^2 + cx + a = 0$ be imaginary, then for all real values of x, the expression $3b^2x^2 + 6bcx + 2c^2$ is		
	(1) greater than 4ab	(2) less than 4ab	
	(3) greater than -4ab	(4) less than -4ab	[2009]
11.	The quadratic equations $x^2 - 6x + a = 0$ and $x^2 - cx + 6 = 0$ have one root in common. The other roots of the first and second equations are integers in the ratio 4 : 3. Then the common root is		
	(1) 1	(2) 4	
	(3) 3	(4) 2	[2008]

Mathematics for IIT-JEE by MANISH KALIA (B.Tech Delhi College Of Engineering) PH:9878146388,9464551253 | www.iitmathematics.com,www.alphaclasses.com <u>sco 43,TOP FLOOR, SECTOR 41-D, CHANDIGARH</u>

CLASSES

If the roots of the quadratic equation $x^2 + px + q = 0$ are tan 30° and tan 15°, respectively then the 12. value of 2 + q - p is (1) 2 (2) 3 (3) 0 (4) 1 [2006] All the values of m for which both roots of the equations $x^2 - 2mx + m^2 - 1 = 0$ are greater 13. than -2 but less than 4, lie in the interval (1) -2 < m < 0(2) m > 3 (4) 1 < m < 4[2006] (3) -1 < m < 3If x is real, the maximum value of $\frac{3x^2 + 9x + 17}{3x^2 + 9x + 7}$ 14. is (1) 1/4 (2) 41 (3) 1 (4) 17/7 [2006] The value of α for which the sum of the square of roots of the $x^2 - (a-2)x - a - 1 = 0$ assume 15. the least value is (1) 1 (2) 0 (3) 3 (4) 2 [2005] If roots of the equation $x^2 - bx + c = 0$ be the consecutive integers, then b^2 -4c equals 16. (1) -2 (2) 3 (3) 2 (4) 1 [2005] If both the roots of the quadratic equation $x^2 - 2kx + k^2 + k - 5 = 0$ are less than 5, then k lies in 17. the interval (1) (5,6] (2) (6,∞) (3) (-∞,4) [2005] (4) [4,5] If (1 - p) is a root of quadratic equation $x^2 + px + (1 - p) = 0$, then its roots are 18. (1) 0,1 (2) -1,2 Mathematics for IIT-JEE by MANISH KALIA (B.Tech Delhi College Of Engineering) CLASSES PH:9878146388,9464551253 | www.iitmathematics.com,www.alphaclasses.com SCO 43, TOP FLOOR, SECTOR 41-D, CHANDIGARH

(3)
$$0, -1$$
(4) $-1, 1$ [2004]19.If one root of the equation $x2 + px + 12 = 0$ is 4, while the equation $x2 + px + q = 0$ has equal
roots, then the value of 'q' is(2) 4(3) 3 (4) 12 [2004]20.If the sum of the roots of the quadratic equation $ax^2 + bx + c = 0$ is equal to the sum of the
squares of their reciprocals, then $\frac{a}{c}$, $\frac{b}{a}$ and $\frac{c}{b}$ are in(1) arithmetic progression(2) geometric progression(3) harmonic progression(4) arithmetic-geometric-progression(3) harmonic progression(2) geometric progression(3) 1(4) 3(1) 2(2) 4(3) 1(4) 3(1) 2(2) 4(3) 1(4) 3(1) 2(2) 4(3) 1(4) 3(2) 7-2/3(3) 1/3(2) -2/3

(1) a + b + 4 = 0 (2) a + b - 4 = 0

CLASSES

Mathematics for IIT-JEE by MANISH KALIA (B.Tech Delhi College Of Engineering) PH:9878146388,9464551253 | www.iitmathematics.com,www.alphaclasses.com <u>SCO 43,TOP FLOOR,SECTOR 41-D,CHANDIGARH</u>