MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

Progression and Series
JEE-MAINS (PREVIOUS YEAR)

MCQ-Single Correct

1. For any three positive real numbers a , b and $\mathrm{c}, 9\left(25 a^{2}+b^{2}\right)+25\left(c^{2}-3 a c\right)=15 b(3 a+c)$. Then :
(1) b, c and a are in G.P.
(2) b, c and a are in A.P.
(3) a, b and c are in A.P.
(4) a, b and c are in G.P.
[2017]
2. If the $2^{\text {nd }}, 5^{\text {th }}$ and $9^{\text {th }}$ terms of a non-constant A.P. are in G.P., then the common ratio of this G.P. is:
(1) $\frac{4}{3}$

(2) 1

(3) $\frac{7}{4}$
(4) $\frac{8}{5}$
[2016]
3. If the sum of first ten terms of the series $\left(1 \frac{3}{5}\right)^{2}+\left(2 \frac{2}{5}\right)^{2}+\left(3 \frac{1}{5}\right)^{2}+4^{2}+\left(4 \frac{4}{5}\right)^{2}+\ldots .$. is $\frac{16}{5} m$, then m is equal to :
(1) 101
(2) 100
(3) 99
(4) 102
[2016]
4. The sum of first 9 terms of the series $\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+$ \qquad is :
(1) 96
(2) 142
(3) 192
(4) 71
[2015]
5. If m is the A.M. of two distinct real numbers I and $\mathrm{n}(1, \mathrm{n}>1)$ and G_{1}, G_{2} and G_{3} are three geometric means between I and n , then $G_{1}{ }^{4}+2 G_{2}{ }^{4}+G_{3}{ }^{4}$ equals
(1) $4 l m^{2} n$
(2) $4 l m n^{2}$
(3) $4 l^{2} m^{2} n^{2}$
(4) $4 l^{2} m n$
[2015]
6. Three positive numbers from an increasing G.P. If the middle term in this G.P. is doubled, the new numbers are in A.P. Then the common ratio of the G.P. is
(1) $\sqrt{2}+\sqrt{3}$
(2) $3+\sqrt{2}$
(3) $2-\sqrt{3}$
(4) $2+\sqrt{3}$
[2014]
7. If $(10)^{9}+2(11)^{1}(10)^{8}+3(11)^{2}(10)^{7}+\ldots . .+10(11)^{9}=k(10)^{9}$, then k is equal to
(1) $\frac{121}{10}$
(2) $\frac{441}{100}$
(3) 100
(4) 110
[2014]
8. The sum of first 20 terms of the sequence $0.7,0.77,0.777, \ldots . .$. , is
(1) $\frac{7}{9}\left(99-10^{-20}\right)$
(2) $\frac{7}{81}\left(179+10^{-20}\right)$
(3) $\frac{7}{9}\left(99+10^{-20}\right)$
(4) $\frac{7}{81}\left(179-10^{-20}\right)$
[2013]
9. If 100 times the $100^{\text {th }}$ term of an AP with non-zero common difference equals the 50 times its $50^{\text {th }}$ term, then the $150^{\text {th }}$ term of this AP is
(1) 150
(2) Zero
(3) -150
(4) 150 times its $50^{\text {th }}$ term.
[2012]
10. Let a_{n} be the $n^{\text {th }}$ term of an AP. If $\sum_{r=1}^{100} a_{2 r}=\alpha$ and $\sum_{r=1}^{100} a_{2 r-1}=\beta$, then the common difference of the A.P. is
(1) $\beta-\alpha$
(2) $\frac{\alpha-\beta}{200}$
(3) $\alpha-\beta$
(4) $\frac{\alpha-\beta}{100}$
[2011]
11. A person is to count 4500 currency notes. Let a_{n} denote the number of notes he counts in the $n^{\text {th }}$ minute. If $a_{1}=a_{2}=\ldots \ldots \ldots=a_{10}=150$ and a_{10}, a_{11}, \ldots. . are in A.P. with common difference -2 , then the time taken by him to count all notes is
(1) 34 minutes
(2) 125 minutes
(3) 135 minutes
(4) 24 minutes
[2010]
12. The sum to the infinity of the series $1+\frac{2}{3}+\frac{6}{3^{2}}+\frac{10}{3^{3}}+\frac{14}{3^{4}}+\ldots \ldots$. is
(1) 2
(2) 3
(3) 4
(4) 6
[2009]
13. The first two terms of a geometric progression add up to 12 . The sum of the third and the fourth terms is 48 . If the terms of the geometric progression are alternately positive and negative, then the first term is
(1) -4
(2) -12
(3) 12
(4) 4
[2008]
14. In a geometric progression consisting of positive terms, each term equals the sum of the next two terms. Then the common ratio of this progression equals

Mathematics for IIT-JEE by MANISH KALIA (B.Tech Delhi College Of Engineering)
PH:9878146388,9464551253|www.iitmathematics.com,www.alphaclasses.com
(1) $\frac{1}{2}(1-\sqrt{5})$
(2) $\frac{1}{2} \sqrt{5}$
(3) $\sqrt{5}$
(4) $\frac{1}{2}(\sqrt{5}-1)$
[2007]
15. If p and q are positive real numbers such that $p^{2}+q^{2}=1$, then the maximum value of $(\mathrm{p}+\mathrm{q})$ is
(1) 2
(2) $1 / 2$
(3) $\frac{1}{\sqrt{2}}$
(4) $\sqrt{2}$
[2007]
16. Let $a_{1}, a_{2}, a_{3}, \ldots \ldots$. be terms of an A.P. If $\frac{a_{1}+a_{2}+\ldots \ldots+a_{p}}{a_{1}+a_{2}+\ldots \ldots+a_{q}}=\frac{p^{2}}{q^{2}}, p \neq q$, then $\frac{a_{6}}{a_{21}}$ equals
(1) $\frac{41}{11}$
(3) $\frac{2}{7}$
(2) $\frac{7}{2}$
(4) $\frac{11}{41}$
[2006]
17. If $a_{1}, a_{2}, \ldots \ldots, a_{n}$ are in H.P., then the expression $a_{1} a_{2}+a_{2} a_{3}+\ldots \ldots .+a_{n-1} a_{n}$ is equal to
(1) $n\left(a_{1}-a_{n}\right)$
(2) $(n-1)\left(a_{1}-a_{n}\right)$
(3) $n a_{1} a_{n}$
(3) $(n-1) a_{1} a_{n}$
[2006]
18. If the coefficients of $r^{\text {th }},(r+1)^{\text {th }}$ and $(r+2)^{\text {th }}$ terms in the binomial expansion of $(1+y)^{m}$ are in A.P., then m and r satisfy the equation
(1) $m^{2}-m(4 r-1)+4 r^{2}-2=0$
(2) $m^{2}-m(4 r+1)+4 r^{2}+2=0$
(3) $m^{2}-m(4 r+1)+4 r^{2}-2=0$
(4) $m^{2}-m(4 r-1)+4 r^{2}+2=0$
[2005]
19. If $x=\sum_{n=0}^{\infty} a^{n}, y=\sum_{n=0}^{\infty} b^{n}, z=\sum_{n=0}^{\infty} c^{n}$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P. and $|a|<1,|b|<1,|c|<1$, then x, y, z are in
(1) G.P.
(2) A.P.
(3) Arithmatic-Geometric Progression
(4) H.P.
[2005]
20. If in a triangle $A B C$, the altitudes from the vertices A, B, C on opposite sides are in H.P., then $\sin A$, $\sin B, \sin C$ are in
(1) G.P.
(2) A.P.
(3) Arithmatic-Geometric Progression
(4) H.P.
[2005]
21. Let two numbers have arithmetic mean 9 and geometric mean 4 . Then these numbers are the roots of the quadratic equation

Mathematics for IIT-JEE by MANISH KALIA (B.Tech Delhi College Of Engineering)
PH:9878146388,9464551253|www.iitmathematics.com,www.alphaclasses.com
(1) $x^{2}+18 x+16=0$
(2) $x^{2}-18 x-16=0$
(3) $x^{2}+18 x-16=0$
(4) $x^{2}-18 x+16=0$
[2004]
22. Let T_{r} be the $r^{\text {th }}$ term of an A.P. whose first term is a and common difference is d . If for some positive integers $m, n, m \neq n, T_{m}=\frac{1}{n}$ and $T_{n}=\frac{1}{m}$, then a - d equals
(1) 0
(2) 1
(3) $\frac{1}{m n}$
(4) $\frac{1}{m}+\frac{1}{n}$
[2004]
23. The sum of the first n terms of the series $1^{2}+2.2^{2}+3^{2}+2.4^{2}+5^{2}+2.6^{2}+\ldots$ is $\frac{n(n+1)^{2}}{2}$ when n is even. When n is odd the sum is
(1) $\frac{3 n(n+1)}{2}$
(3) $\frac{n(n+1)^{2}}{4}$
(4)

[2004]
24. Let $f(x)$ be a polynomial function of second degree. If $f(1)=f(-1)$ and a, b, c are in A.P., then $f^{\prime}(a)$, $f^{\prime}(b)$ and $f^{\prime}(c)$ are in
(1) A.P.
(2) G.P.
(3) H.P.
(4) Arithmatic-Geometric Progression
[2003]
25. If x_{1}, x_{2}, x_{3} and y_{1}, y_{2}, y_{3} are both in G.P. with the same common ratio, then the points $\left(x_{1}, y_{1}\right)$, $\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$
(1) lie on a straight line
(2) lie on an ellipse
(3) lie on a circle
(4) are vertices of a triangle
[2003]
26. The real number x when added to its inverse gives the minimum value of the sum of x equal to
(1) 2
(2) 1
(3) -1
(4) -2
[2003]
27. Let R_{1} and R_{2} respectively be the maximum ranges up and down an inclined plane and R be the maximum range on the horizontal plane. Then R_{1}, R, R_{2} are in
(1) arithmetic-geometric progression
(2) A.P.
(3) G.P.
(4) H.P.
[2003]
28. If $1, \log _{9}\left(3^{1-x}+2\right), \log _{3}\left[4.3^{x}-1\right]$ are in A.P. , then x equals
(1) $\log _{3} 4$
(2) $1-\log _{3} 4$
(3) $1-\log _{4} 3$
(4) $\log _{4} 3$
[2002]

MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

29. $1^{3}-2^{3}+3^{3}-4^{3}+\ldots \ldots+9^{3}$ is equal to
(1) 425
(2) -425
(3) 475
(4) -475
[2002]
30. Sum of infinite number of terms in G.P. is 20 and sum of their squares is 100 . The common ratio of G.P. is
(1) 5
(2) $\frac{3}{5}$
(3) $\frac{8}{5}$
(4) $\frac{1}{5}$
31. The value of $2^{1 / 4} \cdot 4^{1 / n} \cdot 8^{1 / 6} \ldots . . \infty$ is
(1) 1
(2) 2
(3) $3 / 2$
(4) 4
32. Fifth term of a G.P. is 2 , then the product of its 9 terms is
(1) 256
(2) 512
(3) 1024
(4) none of these
[2002]
33. If a, b, c are distinct positive real numbers and $a^{2}+b^{2}+c^{2}=1$, then $a b+b c+c a$ is
(1) less than 1
(2) equal to 1
(3) greater than 1
(4) any real number
[2002]

MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

Assertion-Reason Type

(1) Statement-I is True; Statement-II is true; Statement-II is not a correct explaination of Statement-I.
(2) Statement-I is True; Statement-II is False.
(3) Statement-I is False; Statement-II is true
(4) Statement-I is True; Statement-II is true; Statement-II is a correct explaination of StatementI.

1. Statement-I: The sum of the series $1+(1+2+4)+(4+6+9)+(9+12+16)+\ldots \ldots+(361+380+$ 400) is 8000.

Statement-II : $\sum_{k=1}^{n}\left(k^{3}-(k-1)^{3}\right)=n^{3}$ for any natural number n.

