Progression and Series JEE-MAINS (PREVIOUS YEAR)

MCQ-Single Correct

1.	For any three positive real numbers a, b	and c, $9(25a^2+b^2)+25(c^2-3ac)=$	15b(3a+c).
	Then :		
	(1) b, c and a are in G.P.	(2) b, c and a are in A.P.	
	(3) a, b and c are in A.P.	(4) a, b and c are in G.P.	[2017]
2.	If the 2 nd , 5 th and 9 th terms of a non-cons	tant A.P. are in G.P., then the commor	ratio of this G.P.
	is:		
	(1) $\frac{4}{3}$	(2) 1	
	(3) $\frac{7}{4}$	(4) $\frac{8}{5}$	[2016]
3.	If the sum of first ten terms of the series	$\left(1\frac{3}{5}\right)^2 + \left(2\frac{2}{5}\right)^2 + \left(3\frac{1}{5}\right)^2 + 4^2 + \left(4\frac{4}{5}\right)^2$	$\left(\frac{1}{5}\right)^2 + \dots $ is $\frac{16}{5}m$,
	then m is equal to :		
	(1) 101	(2) 100	
	(3) 99	(4) 102	[2016]
4.	The sum of first 9 terms of the series $\frac{1^3}{1}$.	$+\frac{1^3+2^3}{1^3+2^3+3^3}+$ is:	
	(1) 96	(2) 142	[]
_	(3) 192	(4) 71	[2015]
5.	If m is the A.M. of two distinct real numb		G_3 are three
	geometric means between I and n, then	$G_1^{\ 4} + 2G_2^{\ 4} + G_3^{\ 4}$ equals	
	(1) $4lm^2n$	(2) $4lmn^2$	
	(3) $4l^2m^2n^2$	(4) $4l^2mn$	[2015]
6.	Three positive numbers from an increasi	ng G.P. If the middle term in this G.P. i	s doubled, the
	new numbers are in A.P. Then the comm	on ratio of the G.P. is	
	(1) $\sqrt{2} + \sqrt{3}$	(2) $3 + \sqrt{2}$	
	(3) $2 - \sqrt{3}$	(4) $2 + \sqrt{3}$	[2014]

7.	If $(10)^9 + 2(11)^1(10)^8 + 3(11)^2(10)^7 + .$	$+10ig(11ig)^{9}=kig(10ig)^{9}$, then k is equ	ual to
	(1) $\frac{121}{10}$	(2) $\frac{441}{100}$	
	10	(2) 100	
	(3) 100	(4) 110	[2014]
8.	The sum of first 20 terms of the sequence	e 0.7, 0.77, 0.777, , is	
	(1) $\frac{7}{9} \left(99 - 10^{-20}\right)$	(2) $\frac{7}{81}(179+10^{-20})$	
	$(3) \ \frac{7}{9} (99 + 10^{-20})$	$(4) \ \frac{7}{81} (179 - 10^{-20})$	[2013]
9.	If 100 times the 100 th term of an AP with	non-zero common difference equals	the 50 times its
	50 th term, then the 150 th term of this AP	is 🖉	
	(1) 150	(2) Zero	•
	(3) -150	(4) 150 times its 50 th term.	[2012]
10.	Let a_n be the n^{th} term of an AP . If $\sum_{r=1}^{100} a_{2r}$	$a_r = lpha$ and $\sum_{r=1}^{100} a_{2r-1} = eta$, then the cor	nmon difference
	of the A.P. is		
	(1) $\beta - \alpha$	(2) $\frac{\alpha - \beta}{200}$	
	(3) $\alpha - \beta$	(4) $\frac{\alpha-\beta}{100}$	[2011]
11.	A person is to count 4500 currency notes	. Let $a_{_n}$ denote the number of notes H	ne counts in the
	n^{th} minute. If $a_1 = a_2 = \dots = a_{10} = 15$	0 and $a_{10,}a_{11},$ are in A.P. with com	mon difference
	-2 , then the time taken by him to count	all notes is	
	(1) 34 minutes	(2) 125 minutes	
	(3) 135 minutes	(4) 24 minutes	[2010]
12.	The sum to the infinity of the series $1 + \frac{2}{3}$		
	(1) 2	(2) 3	
10	(3) 4	(4) 6	[2009]
13.	The first two terms of a geometric progre		
	terms is 48. If the terms of the geometric progression are alternately positive and negative, then the first term is		
	(1) -4	(2) -12	
	(3) 12	(4) 4	[2008]
14.	In a geometric progression consisting of		
	two terms. Then the common ratio of thi	· · ·	
$\mathbf{\alpha}$	Mathematics for IIT-JEE by	MANISH KALIA (B.Tech De	elhi College Of Engineering)
WCLASSES		51253 www.iitmathematics.com, www	-
SCO 43,TOP FLOOR,SECTOR 41-D,CHANDIGARH			<u>H</u>

	(1) $\frac{1}{2}(1-\sqrt{5})$	(2) $\frac{1}{2}\sqrt{5}$	
	(3) $\sqrt{5}$	(4) $\frac{1}{2}(\sqrt{5}-1)$	[2007]
15.	If p and q are positive real numbers such that	$p^2 + q^2 = 1$, then the maximum value of	• (p+a)
101			$(\mathbf{P} + \mathbf{q})$
	is (1) 2	(2) 1/	
	(1) 2	(2) ½	
	(3) $\frac{1}{\sqrt{2}}$	(4) $\sqrt{2}$ [2007]	l
	$a_1 + a_2$	$a_1 + \dots + a_n = p^2$	
16.	Let a_1, a_2, a_3, \dots be terms of an A.P. If $\frac{a_1 + a_2}{a_1 + a_2}$	$\frac{2}{p} = \frac{p}{q^2}$, $p \neq q$, then $\frac{q}{q}$ eq	uals
		$a_2 + \dots + a_q + q$	
	(1) $\frac{41}{11}$	$(2) - \frac{1}{2}$	
		2	
	(3) $\frac{2}{7}$	(4) $\frac{11}{41}$	[2006]
17.	If a_1, a_2, \dots, a_n are in H.P., then the expression	n $a_1 a_2 + a_2 a_3 + \dots + a_{n-1} a_n$ is equal to	
	(1) $n(a_1 - a_n)$	(2) $(n-1)(a_1-a_n)$	
	(3) $n a_1 a_n$	(3) $(n-1)a_1a_n$	[2006]
18.	If the coefficients of r^{th} , $\left(r+1\right)^{th}$ and $\left(r+2\right)^{t}$	$^{^{h}}$ terms in the binomial expansion of $(1+$	$(y)^m$ are
	in A.P., then m and r satisfy the equation	, , , , , , , , , , , , , , , , , , ,	,
	(1) $m^2 - m(4r-1) + 4r^2 - 2 = 0$	(2) $m^2 - m(4r+1) + 4r^2 + 2 = 0$	
	(3) $m^2 - m(4r+1) + 4r^2 - 2 = 0$	(4) $m^2 - m(4r-1) + 4r^2 + 2 = 0$	[2005]
19.	If $x = \sum_{n=1}^{\infty} a^n$, $y = \sum_{n=1}^{\infty} b^n$, $z = \sum_{n=1}^{\infty} c^n$ where a,b	care in A P and $ a < 1$ $ b < 1$ $ c < 1$ t	honyy
19.	n=0 $n=0$ $n=0$ $n=0$ where a,b	$ \alpha < 1, \beta < 1, $	пен х, у ,
	z are in		
	(1) G.P.	(2) A.P.	
	(3) Arithmatic-Geometric Progression	(4) H.P.	[2005]
20.	If in a triangle ABC, the altitudes from the vert	ices A,B,C on opposite sides are in H.P., t	hen sin A,
	sin B, sin C are in		
	(1) G.P.	(2) A.P.	
	(3) Arithmatic-Geometric Progression	(4) H.P.	[2005]
21.	Let two numbers have arithmetic mean 9 and	geometric mean 4. Then these numbers	are the
	roots of the quadratic equation		

	(1) $x^2 + 18x + 16 = 0$	$(2) x^2 - 18x - 16 = 0$	
	$(3) x^2 + 18x - 16 = 0$	$(4) x^2 - 18x + 16 = 0$	[2004]
22.	Let T_r be the r^{th} term of an A.P. whose first term	rm is a and common difference is d. If for	some
	positive integers $m, n, m \neq n$, $T_m = \frac{1}{n}$ and T_n	$=\frac{1}{m}$, then a – d equals	
	(1) 0	(2) 1	
	(3)	(4) $\frac{1}{m} + \frac{1}{n}$	[2004]
	mn	(+) m n	[2004]
23.	The sum of the first n terms of the series $1^2 + 2$	$2.2^2 + 3^2 + 2.4^2 + 5^2 + 2.6^2 + \dots$ is $\frac{n(n)}{n}$	$\frac{(1+1)^2}{2}$
	when n is even. When n is odd the sum is		-
	3n(n+1)	$n^{2}(n+1)$	
	(1) $\frac{3n(n+1)}{2}$	$(2) - \frac{1}{2}$	
	(3) $\frac{n(n+1)^2}{1}$	$\left[n(n+1)\right]^2$	
	$(3) \frac{1}{4}$	(4) $\frac{1}{2}$	[2004]
24.	Let f(x) be a polynomial function of second deg	gree. If $f(1)=f(-1)$ and a,b,c are in A.P., the	n f'(a) <i>,</i>
	f'(b) and f'(c) are in		
	(1) A.P.	(2) G.P.	
	(3) H.P.	(4) Arithmatic-Geometric Progression	[2003]
25.	If x_1, x_2, x_3 and y_1, y_2, y_3 are both in G.P. with	the same common ratio, then the points	(x_1, y_1)
	, $ig(x_2,y_2ig)$ and $ig(x_3,y_3ig)$		
	(1) lie on a straight line	(2) lie on an ellipse	
26	(3) lie on a circle	(4) are vertices of a triangle	[2003]
26.	The real number x when added to its inverse g (1) 2	ives the minimum value of the sum of x e (2) 1	equal to
	(1) 2 (3) -1	(4) -2	[2003]
27.	Let R_1 and R_2 respectively be the maximum r		
maximum range on the horizontal plane. Then R_1, R, R_2 are in			
	(1) arithmetic-geometric progression	(2) A.P.	
	(3) G.P.	(4) H.P.	[2003]
28.	If 1, $\log_9(3^{1-x}+2)$, $\log_3[4.3^x-1]$ are in A.F.	P. , then x equals	
	(1) $\log_3 4$	(2) $1 - \log_3 4$	
	(3) $1 - \log_4 3$	(4) $\log_4 3$	[2002]
		ANISH KALIA (B.Tech Delhi Colle	and Of Eng
	5	www.iitmathematics.com,www.alphacl	0 0

ngineering) SCO 43, TOP FLOOR, SECTOR 41-D, CHANDIGARH

29.	$1^3 - 2^3 + 3^3 - 4^3 + \dots + 9^3$ is equal to (1) 425	(2) -425	
	(3) 475	(4) -475	[2002]
30.	Sum of infinite number of terms in G.P. is 2 of G.P. is		
	(1) 5	(2) $\frac{3}{5}$	
	(3) $\frac{8}{5}$	(4) $\frac{1}{5}$	[2002]
31.	The value of $2^{1/4} \cdot 4^{1/n} \cdot 8^{1/6} \cdot \ldots \cdot \infty$ is		
	(1) 1	(2) 2	
	(3) 3/2	(4) 4	[2002]
32.	P. Fifth term of a G.P. is 2, then the product of its 9 terms is		
	(1) 256	(2) 512	
	(3) 1024	(4) none of these	[2002]
33. If a,b,c are distinct positive real numbers and $a^2 + b^2 + c^2 = 1$, then $ab + bc + ca$ is			S
	(1) less than 1	(2) equal to 1	
	(3) greater than 1	(4) any real number	[2002]

Assertion-Reason Type

- (1) Statement-I is True; Statement-II is true; Statement-II is **not** a correct explaination of Statement-I.
- (2) Statement-I is True; Statement-II is False.
- (3) Statement-I is False; Statement-II is true
- (4) Statement-I is True; Statement-II is true; Statement-II is a **correct** explaination of Statement-I.

[2012]

1. **Statement-I**: The sum of the series 1+ (1 +2 +4) + (4 + 6 + 9) + (9 + 12 + 16) + + (361 + 380 + 400) is 8000.

Statement-II: $\sum_{k=1}^{n} (k^3 - (k-1)^3) = n^3$ for any natural number n.

