MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

Parabola

JEE-MAINS (PREVIOUS YEAR)

MCQ-Single Correct

1. Let P be the point on the parabola, $y^{2}=8 x$ which is at a minimum distance from the centre C of the circle, $x^{2}+(y+6)^{2}=1$. Then the equation of the circle, passing through C and having its centre at P is :
(1) $x^{2}+y^{2}-x+4 y-12=0$
(2)

(3) $x^{2}+y^{2}-4 x+9 y+18=0$
(4) $x^{2}+y^{2}-4 x+8 y+12=0$
[2016]
2. The centres of those circles which touch the circle, $x^{2}+y^{2}-8 x-8 y-4=0$, externally and also touch the x-axis, lie on :
(1) an ellipse which is not a circle.
(2) a hyperbola.
(3) a parabola.
(4) a circle
[2016]
3. Let O be the vertex and Q be any point on the parabola, $x^{2}=8 y$. If the point P divides the line segment $O Q$ internally in the ratio $1: 3$, then the locus of P is :
(1) $y^{2}=x$
(2) $y^{2}=2 x$
(3) $x^{2}=2 y$
(4) $x^{2}=y$
[2015]
4. The slope of the line touching both the parabolas $y^{2}=4 x$ and $x^{2}=-32 y$ is
(1)
$\frac{1}{2}$
(2) $\frac{3}{2}$
(3) $\frac{1}{8}$
(4) $\frac{2}{3}$
[2014]
5. If two tangents drawn from a point P to the parabola $y^{2}=4 x$ are at right angles, then the locus of P is

Mathematics for IIT-JEE by MANISH KALIA (B.Tech Delhi College Of Engineering)
PH:9878146388,9464551253|www.iitmathematics.com,www.alphaclasses.com

MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

(1) $2 x+1=0$
(2) $x=-1$
(3) $2 x-1=0$
(4) $x=1$
[2010]
6. The area of the region bounded by the parabola $(y-2)^{2}=x-1$, the tangent to the parabola at the point $(2,3)$ and the x-axis is
(1) 3
(2) 6
(3) 9
(4) 12
[2009]
7. A parabola has the origin as its focus and the line $x=2$ as the directrix. Then the vertex of the parabola is at
(1) $(0,2)$
(2) $(1,0)$
(3) $(0,1)$
(4) $(2,0)$
[2008]
8. The locus of the vertices of the family of parabolas $y=\frac{a^{3} x^{2}}{3}+\frac{a^{2} x}{2}-2 a$ is
(1) $x y=\frac{105}{64}$
(2) $x y=\frac{3}{4}$
(3) $x y=\frac{35}{16}$
(4) $x y=\frac{64}{105}$
[2006]
9. Let P be the point $(1,0)$ and Q a point on the locus $y^{2}=8 x$. The locus of mid point of PQ is
(1) $x^{2}-4 x+2=0$
(2) $y^{2}+4 x+2=0$
(3) $x^{2}+4 y+2=0$
(4) $x^{2}-4 y+2=0$
[2005]
10. If $a \neq 0$ and the line $2 b x+3 c y+4 d=0$ passes through the points of intersection of the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$, then
(1) $d^{2}+(2 b+3 c)^{2}=0$
(2) $d^{2}+(3 b+2 c)^{2}=0$
(3) $d^{2}+(2 b-3 c)^{2}=0$
(4) $d^{2}+(3 b-2 c)^{2}=0$
[2004]

MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

11. The normal at the point $\left(b t_{1}^{2}, 2 b t_{1}\right)$ on a parabola meets the parabola again in the point $\left(b t_{2}{ }^{2}, 2 b t_{2}\right)$, then
(1) $t_{2}=-t_{1}-\frac{2}{t_{1}}$
(2) $t_{2}=-t_{1}+\frac{2}{t_{1}}$
(3) $t_{2}=t_{1}-\frac{2}{t_{1}}$
(4) $t_{2}=t_{1}+\frac{2}{t_{1}}$
12. Two common tangents to the circle $x^{2}+y^{2}=2 a^{2}$ and parabola $y^{2}=8 a x$ are
(1) $x= \pm(y+2 a)$
(2) $y= \pm(x+2 a)$
(3) $x= \pm(y+a)$

$$
\text { (4) } y= \pm(x+a)
$$

[2002]

MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

Assertion-Reason Type

(1) Statement-I is True; Statement-II is true; Statement-II is not a correct explaination of Statement-I.
(2) Statement-I is True; Statement-II is False.
(3) Statement-I is False; Statement-II is true
(4) Statement-I is True; Statement-II is true; Statement-II is a correct explaination of StatementI.

1. Given : A circle, $2 x^{2}+2 y^{2}=5$ and a parabola, $y^{2}=4 \sqrt{5} x$.

Statement-I : An equation of a common tangent to these curves is $y=x+\sqrt{5}$

Statement-II : If the line, $y=m x+\frac{\sqrt{5}}{m}(m \neq 0)$ is their common tangent, then m satisfies
$m^{4}-3 m^{2}+2=0$
2. Statement-I : An equation of a common tangent to the parabola $y^{2}=16 \sqrt{3} x$ and the ellipse $2 x^{2}+y^{2}=4$ is $y=2 x+2 \sqrt{3}$.

Statement-II : If the line $y=m x+\frac{4 \sqrt{3}}{m},(m \neq 0)$ is a common tangent to the parabola $y^{2}=16 \sqrt{3} x$ and ellipse $2 x^{2}+y^{2}=4$, then m satisfies $m^{4}+2 m^{2}=24$.
3. Let the tangent to the parabola be $y=m x+\frac{\sqrt{5}}{m},(m \neq 0)$.

Now, its distance from the centre of the circle must be equal to the radius of the circle.

$$
\begin{aligned}
& \text { So, }\left|\frac{\sqrt{5}}{m}\right|=\frac{\sqrt{5}}{\sqrt{2}} \sqrt{1+m^{2}} \Rightarrow\left(1+m^{2}\right) m^{2}=2 \Rightarrow m^{4}+m^{2}-2=0 \\
& \Rightarrow\left(m^{2}-1\right)\left(m^{2}+2\right)=0 \Rightarrow m= \pm 1
\end{aligned}
$$

So, the common tangents are $y=x+\sqrt{5}$ and $y=-x-\sqrt{5}$.

MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

