Matrices

MCQ-Single Correct

1. If $\mathrm{A}=\left[\begin{array}{cc}2 & -3 \\ -4 & 1\end{array}\right]$, then $\operatorname{adj}\left(3 A^{2}+12 A\right)$ is equal to:
(1) $\left[\begin{array}{cc}72 & -84 \\ -63 & 51\end{array}\right]$
(2) $\left[\begin{array}{ll}51 & 63 \\ 84 & 72\end{array}\right]$
(3) $\left[\begin{array}{ll}51 & 84 \\ 63 & 72\end{array}\right]$
(4) $\left[\begin{array}{cc}72 & -63 \\ -84 & 51\end{array}\right]$
[2017]
2. If $\mathrm{A}=\left[\begin{array}{cc}5 a & -b \\ 3 & 2\end{array}\right]$ and $\operatorname{Aadj} A=A A^{T}$, then $5 \mathrm{a}+\mathrm{b}$ is equal to :
(1) 5
(2) 4
(3) 13
(4) -1
[2016]
3. If $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b\end{array}\right]$ is a matrix satisfying the equation $A A^{T}=9 I$, where I is 3×3 identity matrix, then ordered pair (a, b) is equal to :
(1) $(-2,1)$
(2) $(2,1)$
(3) $(-2,-1)$
(4) $(2,-1)$
[2015]
4. If A is a 3×3 non-singular matrix such that $\mathrm{AA}^{\prime}=\mathrm{A}^{\prime} \mathrm{A}$ and $B=A^{-1} A$, then $B B^{\prime}$ equals
(1) $I+B$
(2) I
(3) B^{-1}
(4) $\left(B^{-1}\right)^{\prime}$
[2014]
If $P=\left[\begin{array}{lll}1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4\end{array}\right]$ is the adjoint of a 3×3 matrix A and $|A|=4$, then α is equal to
(1) 11
(2) 5
(3) 0
(4) 4
[2013]
5. Let $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right)$. If u_{1} and u_{2} are column matrices such that $A u_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $A u_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$, then
$u_{1}+u_{2}$ is equal to

MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

(1) $\left(\begin{array}{c}-1 \\ -1 \\ 0\end{array}\right)$
(2) $\left(\begin{array}{c}1 \\ -1 \\ -1\end{array}\right)$
(3) $\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)$
(4) $\left(\begin{array}{c}-1 \\ 1 \\ -1\end{array}\right)$
[2012]
7. If $\omega \neq 1$ is the complex cube root of unity and matrix $\mathrm{H}=\left[\begin{array}{ll}\omega & 0 \\ 0 & \omega\end{array}\right]$, then H^{70} is equal to
(1) H^{2}
(2) H
(3) 0
(4) -H
[2011]
8. The number of 3×3 non-singular matrices, with four entries as 1 and all other entries as 0 , is
(1) 5
(2) 6
(3) at least 7
(4) less than 4
[2010]
9. Let A be a square matrix all of whose entries are integers. Then which one of the following is true?
(1) If $\operatorname{det} \mathrm{A}= \pm 1$, then A^{-1} exists but all its entries are not necessarily integers
(2) If $\operatorname{det} \mathrm{A}= \pm 1$, then A^{-1} exists and all its entries are non-integers
(3) If $\operatorname{det} \mathrm{A}= \pm 1$, then A^{-1} exists and all its entries are integers
(4) If $\operatorname{det} \mathrm{A}= \pm 1$, then A^{-1} need not exist
[2008]
10. Let $\mathrm{A}=\left[\begin{array}{ccc}5 & 5 \alpha & \alpha \\ 0 & \alpha & 5 \alpha \\ 0 & 0 & 5\end{array}\right]$. If $\left|A^{2}\right|=25$, then $|\alpha|$ equals
(1) 5^{2}
(2) 1
(3) $1 / 5$
(4) 5
[2007]
11. If A and B are square matrices of size $n \times n$ such that $A^{2}-B^{2}=(A-B)(A+B)$, then which of the following will be always true?
(1) $A=B$
(2) $A B=B A$
(3) Either of A or B is a zero matrix
(4) Either of A or B is an identity matrix
[2006]
12. Let $\mathrm{A}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ and $\mathrm{B}=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right), \mathrm{a}, \mathrm{b} \in \mathrm{N}$. Then
(1) there cannot exist any B such that $A B=B A$

Mathematics for IIT-JEE by MANISH KALIA (B.Tech Delhi College Of Engineering) PH:9878146388,9464551253|www.iitmathematics.com,www.alphaclasses.com

MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

(2) there exist more than one but finite number of B^{\prime} s such that $A B=B A$
(3) there exists exactly one B such that $A B=B A$
(4) there exist infinitely many $B^{\prime} s$ such that $A B=B A$
[2006]
13. If $A^{2}-A+I=0$, then the inverse of A is
(1) $A+1$
(2) A
(3) $A-1$
(4) $I-A$
14. If $\mathrm{A}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ and $\mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then which one of the following holds for all $n \geq 1$, by the principle of mathematical induction
(1) $A^{n}=n A-(n-1) I$
(2) $A^{n}=2^{n-1} A-(n-1) I$
(3) $A^{n}=n A+(n-1) I$
(4) $A^{n}=2^{n-1} A+(n-1) I$
[2005]
15. Let $A=\left(\begin{array}{ccc}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{array}\right)$. The only correct statement about the matrix A is
(1) A is a zero matrix
(2) $A^{2}=I$
(3) A^{-1} does not exist
(4) $A=(-1) I$, where I is a unit matrix
[2004]
16. Let $A=\left(\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right)(10)$ and $B=\left(\begin{array}{ccc}4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3\end{array}\right)$. If B is the inverse of matrix A, then α is
(1) -2
(2) 5
(3) 2
(4) -1
[2004]
17. If $A=\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]$ and $A^{2}=\left[\begin{array}{ll}\alpha & \beta \\ \beta & \alpha\end{array}\right]$, then
(1) $\alpha=a^{2}+b^{2}, \beta=a b$
(2) $\alpha=a^{2}+b^{2}, ~ \beta=2 a b$
(3) $\alpha=a^{2}+b^{2}, \beta=a^{2}-b^{2}$
(4) $\alpha=2 a b \beta=a^{2}+b^{2}$
[2003]

Assertion-Reason type

1. Consider the following relation \mathbf{R} on the set of real square matrices of order 3.
[2011]
$R=\left\{(A, B) \mid A=P^{-1} B P\right.$ for some invertible matrix $\left.P\right\}$.
Statement -I : R is an equivalence relation.
Statement-II : For any two invertible 3×3 matrices M and $\mathrm{N},(M N)^{-1}=N^{-1} M^{-1}$.

MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

(1) Statement-I is True; Statement-II is true; Statement-II is not a correct explaination of Statement-I.
(2) Statement-I is True; Statement-II is False.
(3) Statement-I is False; Statement-II is true
(4) Statement-I is True; Statement-II is true; Statement-II is a correct explaination of StatementI.
2. Let A be a 2×2 matrix with non-zero entries and let $A^{2}=I$, where I is 2×2 identity matrix. Define $\operatorname{Tr}(A)=$ sum of diagonal elements of A and $|A|=$ determinant of matrix A.[2010]
Statement-I: $\operatorname{Tr}(A)=0$
Statement-II : $|A|=1$
(1) Statement-I is True; Statement-II is true; Statement-II is not a correct explaination of Statement-I.
(2) Statement-I is True; Statement-II is False.
(3) Statement-I is False; Statement-II is true
(4) Statement-I is True; Statement-II is true; Statement-II is a correct explaination of StatementI.
3. Let A be a 2×2 matrix
[2009]
Statement-I : $\operatorname{adj}(\operatorname{adj} A)=A$
Statement-II : $|\operatorname{adj} A|=|A|$
(1) Statement-I is True; Statement-II is true; Statement-II is not a correct explaination of Statement-I.
(2) Statement-I is True; Statement-II is False.
(3) Statement-I is False; Statement-II is true
(4) Statement-I is True; Statement-II is true; Statement-II is a correct explaination of StatementI.
4. Let A be a 2×2 matrix with real entries. Let I be the 2×2 identity matrix. Denote by $\operatorname{tr}(A)$, the sum of diagonal entries of A . Assume that $A^{2}=I$
[2008]
Statement-I: If $A \neq I$ and $A \neq-I$, then $\operatorname{det} A=-1$.
Statement-II : If $A \neq I$ and $A \neq-I$, then $\operatorname{tr}(A) \neq 0$
(1) Statement-I is True; Statement-II is true; Statement-II is not a correct explaination of Statement-I.
(2) Statement-I is True; Statement-II is False.
(3) Statement-I is False; Statement-II is true
(4) Statement-I is True; Statement-II is true; Statement-II is a correct explaination of StatementI.

