Limits Continuity and Differentiability

JEE-MAINS (PREVIOUS YEAR)

MCQ-Single Correct

(3)
$$2/3$$
 (4) $-2/3$ [2003]
27. Let f (a) = g(a) = k and their n^n derivatives $f^n(a)$, $g^n(a)$ exist and are not equal for some n.
Further if $\lim_{x\to\infty} \frac{f(a)g(x) - f(a) - g(a)f(x) + g(a)}{g(x) - f(x)} = 4$, then the value of k is
(1) 4 (2) 2
(3) 1 (4) 0 [2003]
28. If f(x) = $\begin{cases} xe^{-(\frac{1}{|a|}-1)} & x \neq 0 \\ 0 & x = 0 \end{cases}$
then f(x) is
(1) Continuous as well as differentiable for all x
(2) Continuous for all x but not differentiable at x = 0
(3) Neither differentiable nor continuous at x = 0
(4) Discontinuous everywhere [2003]
29. $\lim_{n\to\infty} \frac{1+2^1+3^1+....+n}{n^5} \lim_{n\to\infty} \frac{1+2^3+3+....+n^5}{n^5}$
is
(1) $\frac{1}{30}$ (2) zero
(3) $\frac{1}{4}$ (4) $\frac{1}{5}$ [2003]
30. $\lim_{x\to\infty} \frac{\log x^n - g(x)}{|x|}, n \in N$, ([x] denotes greatest integer less than or equal to x)
(1) has value 1 (2) has value 0
(3) has value 1 (4) does not exist [2002]
31. $\lim_{n\to\infty} \frac{1^p + 2^p + 3^p ++n^n}{n^{p+1}}$ is

(1)
$$\frac{1}{p+1}$$
 (2) $\frac{1}{p-1}$
(3) $\frac{1}{p} - \frac{1}{p-1}$ (4) $\frac{1}{p+2}$ [2002]
32. If is defined in [-5,5] as f(x) = x, if x is rational and = -x, if x is irrational. Then
(1) f(x) is continuous at every x, except x = 0
(2) f(x) is discontinuous everywhere
(4) f(x) is discontinuous everywhere
(3) f(x) is discontinuous everywhere
(4) f(x) is discontinuous everywhere
(3) $\frac{1}{p} = \left(x + \sqrt{1+x^2}\right)^4$, then $\left(1 + x^2\right) \frac{d^2y}{dx^2} + x \frac{dy}{dx}$ is
(1) n^2y (2) $-n^2x$
(3) $-y$ (4) $2n^2y$ [2002]
34. If f(1) = 1, f'(1) = 2, then $\lim_{x\to 1} \frac{\sqrt{f(x)} - 1}{\sqrt{x-1}}$ is
(1) 2 (2) 4
(3) 1 (4) ½ [2002]
35. $\lim_{x\to 0} \frac{\sqrt{1-\cos 2x}}{\sqrt{2x}}$ is
(4) 1 (2) (2) -1
(3) 0 (4) does not exist [2002]
36. $\lim_{x\to\infty} \left(\frac{x^2 + 5x + 3}{x^2 + x + 3}\right)^{1/x}$
(1) e^4 (2) e^2
(3) e^3 (4) 1 [2002]

Let f(x) = 4 and f'(x) = 4, then $\lim_{x \to 2} \frac{xf(2) - 2f(x)}{x - 2}$ equals 37. (1) 2 (2) -2 (4) 3 (3) -4 [2002]

Assertion – Reason Type

Statement-II : gof is twice differentiable at x = 0.

