MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

Functions
JEE-MAINS (PREVIOUS YEAR)

MCQ-Single Correct

1. The function $\mathrm{f}: R \rightarrow\left[-\frac{1}{2}, \frac{1}{2}\right]$ defined as $f(x)=\frac{x}{1+x^{2}}$, is :
(1) invertible.
(2) injective but not surjective.
(3) surjective but not injective.
(4) neither injective nor surjective.
[2017]
2. Let $a, b, c \in R$. If $f(x)=a x^{2}+b x+c$ is such that $a+b+c=3$ and $f(x+y)=f(x)+f(y)+x y \forall x, y \in R$, then $\sum_{n=1}^{10} f(n)$ is equal to :
(1) 330
(2) 165
(3) 190
(4) 255
[2017]
3. If $f(x)+2 f\left(\frac{1}{x}\right)=3 x, x \neq 0$ and $S=\{x \in R: f(x)=f(-x)\}$; then $\mathrm{S}:$
(1) contains exactly one element.
(2) contains exactly two elements.
(3) contains more than two elements
(4) is an empty set
[2016]
4. If $a \in R$ and the equation $-3(x-[x])^{2}+2(x-[x])+a^{2}=0$ (where $[x]$ denotes the greatest integer $\leq x$) has no integral solution, then all possible values of a lie in the interval
(1) $(-1,0) \cup(0,1)$
(2) $(1,2)$
(3) $(-2,-1)$
(3) $\frac{1}{1+\{g(x)\}^{5}}$
(4) $1+\{g(x)\}^{5}$
[2014]
5. For real x, let $f(x)=x^{3}+5 x+1$, then
(1) f is one-one but not onto R
(2) f is onto R but not one-one
(3) fis one-one and onto R
(4) f is neither one-one nor onto R
[2009]
6. Let $\mathrm{f}: N \rightarrow Y$ be a function defined as $f(x)=4 x+3$, where $Y=\{y \varepsilon N: y=4 x+3$ for some $x \in N\}$. Show that f is invertible and its inverse is
(1) $g(y)=\frac{3 y+4}{4}$
(2) $g(y)=4+\frac{y+3}{4}$
(3) $g(y)=\frac{y+3}{4}$
(4) $g(y)=\log \left|\sin \left(x-\frac{\pi}{4}\right)\right|+c$
[2008]
7. The largest interval lying in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ for which the function $\left[f(x)=4^{-x^{2}}+\cos ^{-1}\left(\frac{x}{2}-1\right)+\log (\cos x)\right]$ is defined , is
(1) $[0, \pi]$
(2) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(3) $\left[-\frac{\pi}{4}, \frac{\pi}{2}\right)$
(4) $\left[0, \frac{\pi}{2}\right]$
[2007]
8. Let $\mathrm{f}:(-1,1) \rightarrow B$, be a function defined by $f(x)=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$, then f is both one-one and onto when B is the interval
(1) $\left(0, \frac{\pi}{2}\right)$
(2) $\left[0, \frac{\pi}{2}\right)$
(3) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
(4) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
[2005]
9. A real valued function $f(x)$ satisfies the functional equation $f(x-y)=f(x) f(y)-f(a-x) f(a+y)$ where a is a given constant and $f(0)=1, f(2 a-x)$ is equal to
(1) $-f(x)$
(2) $f(x)$
(3) $f(a)+f(a-x)$
(4) $f(-x)$
[2006]
10. The range of the function $f(x)={ }^{7-x} P_{x-3}$ is
(1) $\{1,2,3\}$
(2) $\{1,2,3,4,5\}$
(3) $\{1,2,3,4\}$
(4) $\{1,2,3,4,5,6\}$
[2004]
11. If $\mathrm{f}: R \rightarrow S$, defined by $f(x)=\sin x-\sqrt{3} \cos x+1$, is onto, then the interval of S is
(1) $[0,3]$
(2) $[-1,1]$
(3) $[0,1]$
(4) $[-1,-3]$
12. The graph of the function $y=f(x)$ is symmetrical about the line $x=2$, then
(1) $f(x+2)=f(x-2)$
(2) $f(2+x)=f(2-x)$
(3) $f(x)=f(-x)$
(4) $f(x)=-f(-x)$
[2004]
13. The domain of the function $f(x)=\frac{\sin ^{-1}(x-3)}{\sqrt{9-x^{2}}}$ is
(1) $[2,3]$
(2) $[2,3)$
(3) $[1,2]$
(4) $[1,2$)
[2004]
14. A function from the set of natural numbers to integers defined by
$f(n)= \begin{cases}\frac{n-1}{2}, & \text { when n is odd } \\ -\frac{n}{2}, & \text { when nis even }\end{cases}$
(1) one-one but not onto
(2) onto but not one-one
(3) one-one and onto both
(4) neither one-one nor onto
[2003]
15. If $f: R \rightarrow R$ satisfies $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$ and $\mathrm{f}(1)=7$, then $\sum_{r=1}^{n} f(r)$ is
(1) $\frac{7 n}{2}$
(2) $\frac{7(n+1)}{2}$
(3) $7 n(n+1)$
(4) $\frac{7 n(n+1)}{2}$
[2003]
16. Domain of definition of the function $\mathrm{f}(\mathrm{x})=\frac{3}{4-x^{2}}+\log _{10}\left(x^{3}-x\right)$, is
(1) $(1,2)$
(2) $(-1,0) \cup(1,2)$
(3) $(1,2) \cup(2, \infty)$
(4) $(-1,0) \cup(1,2) \cup(2, \infty)$
[2003]
17. The function $\mathrm{f}(\mathrm{x})=\log \left(x+\sqrt{x^{2}+1}\right)$, is
(1) an even function
(2) an odd function
(3) a periodic function
(4) neither an even nor an odd function [2003]
18. The period of $\sin ^{2} \theta$ is
(1) π^{2}
(2) π
(3) π^{3}
(4) $\pi / 2$
[2002]
19. Which one is not periodic
(1) $|\sin 3 x|+\sin ^{2} x$
(2) $\cos \sqrt{x}+\cos ^{2} x$
(3) $\cos 4 x+\tan ^{2} x$
(4) $\cos 2 x+\sin x$
[2002]
20. If $f(x+y)=f(x) \cdot f(y) \forall x, y$ and $f(5)=2, f^{\prime}(0)=3$, then $f^{\prime}(5)$ is
(1) 0
(2) 1
(3) 6
(4) 2
[2002]
21. The domain of $\sin ^{-1}\left[\log _{3}\left(\frac{x}{3}\right)\right]$ is
(1) $[1,9]$
(2) $[-1,9]$
(3) $[-9,1]$
(4) $[-9,-1]$
[2002]

MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

Assertion - Reason Type

1. Let f be a function defined by $f(x)=(x-1)^{2}+1,(x \geq 1)$

Statement-I: The set $\left\{x: f(x)=f^{-1}(x)\right\}=\{1,2\}$.

Statement - II : f is bijection and $\mathrm{f}^{-1}(x)=1+\sqrt{x-1}, x \geq 1$.
2. Let $f(x)=(x+1)^{2}-1, x \geq-1$

Statement - I: The set $\left\{x: f(x)=f^{-1}(x)\right\}=\{0,-1\}$

Statement - II : fis a bijection.

