MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

Ellipse

JEE-MAINS (PREVIOUS YEAR)

MCQ-Single Correct

1. The eccentricity of an ellipse whose centre is at the origin is $\frac{1}{2}$. If one of its directrices is $x=-4$, then the equation of the normal to it at $\left(1, \frac{3}{2}\right)$ is :
(1) $2 y-x=2$
(2) $4 x-2 y=1$
(3) $4 x+2 y=7$
(4) $x+2 y=4$
[2017]
2. The area (in sq. units) of the quadrilateral formed by the tangents at the end points of the latera recta to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$, is :
(1) 18
(2) $\frac{27}{2}$
(3) 27
(4) $\frac{27}{4}$
[2015]
3. The locus of the foot of perpendicular drawn from the centre of the ellipse $x^{2}+3 y^{2}=6$ on any tangent to it is
(1) $\left(x^{2}-y^{2}\right)^{2}=6 x^{2}+2 y^{2}$
(2) $\left(x^{2}-y^{2}\right)^{2}=6 x^{2}-2 y^{2}$
(3) $\left(x^{2}+y^{2}\right)^{2}=6 x^{2}+2 y^{2}$
(4) $\left(x^{2}+y^{2}\right)^{2}=6 x^{2}-2 y^{2}$
[2014]
4. The equation of the circle passing through the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$, and having centre at $(0,3)$ is
(1) $x^{2}+y^{2}-6 y+7=0$
(2) $x^{2}+y^{2}-6 y-5=0$
(3) $x^{2}+y^{2}-6 y+5=0$
(4) $x^{2}+y^{2}-6 y-7=0$
[2013]

MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

5. An ellipse is drawn by taking a diameter of the circle $(x-1)^{2}+y^{2}=1$, as its semi-minor axis and a diameter of the circle $x^{2}+(y-2)^{2}=4$ as its semi-major axis. If the centre of the ellipse is at the origin and its axes are the coordinate axes, then the equation of the ellipse is
(1) $4 x^{2}+y^{2}=8$
(2) $x^{2}+4 y^{2}=16$
(3) $4 x^{2}+y^{2}=4$
(4) $x^{2}+4 y^{2}=8$
[2012]
6. The ellipse $x^{2}+4 y^{2}=4$ is inscribed in a rectangle aligned with the coordinate axes, which in turn is inscribed in another ellipse that passes through the point $(4,0)$. Then the equation of the ellipse is
(1) $x^{2}+16 y^{2}=16$
(2) $x^{2}+12 y^{2}=16$
(3) $4 x^{2}+48 y^{2}=-48$
(4) $4 x^{2}+64 y^{2}=48$
[2009]
7. A focus of an ellipse is at the origin. The directrix is the line $x=4$ and the eccentricity is $1 / 2$. Then the length of the semi-major axis is
(1) $\frac{8}{3}$
(2) $\frac{2}{3}$
(3) $\cot \left(\operatorname{cosec}^{-1} \frac{5}{3}+\tan ^{-1} \frac{2}{3}\right)$
(4) $\frac{6}{17}$
[2008]
8. In an ellipse, the distance between its foci is 6 and minor axis is 8 . Then its eccentricity is
(1) $\frac{3}{5}$
(2) $\frac{1}{2}$
(3) $\frac{4}{5}$
(4) $\frac{1}{\sqrt{5}}$
[2006]
9. An ellipse has $O B$ as semi minor axis, F and F^{\prime} its focii and the angle $F B F^{\prime}$ is a right angle. Then the eccentricity of the ellipse is
(1) $\frac{1}{\sqrt{2}}$
(2) $\frac{1}{2}$
(3) $\frac{1}{4}$
(4) $\frac{1}{\sqrt{5}}$
[2005]

MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

10. The eccentricity of an ellipse, with its centre at the origin, is $\frac{1}{2}$. If one of the directrices is $x=4$, then the equation of the ellipse is
(1) $3 x^{2}+4 y^{2}=1$
(2) $3 x^{2}+4 y^{2}=12$
(3) $4 x^{2}+3 y^{2}=12$
(4) $4 x^{2}+3 y^{2}=1$
[2004]
11. The foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ and the hyperbola $\frac{x^{2}}{144}-\frac{y^{2}}{81}=\frac{1}{25}$ coincide. Then the value of b^{2} is
(1) 1
(2) 5
(3) 7
(4) 9
[2003]

Mathematics for IIT-JEE by MANISH KALIA (B.Tech Delhi College Of Engineering)

