MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

Differential Equations

JEE-MAINS (PREVIOUS YEAR)

MCQ-Single Correct

1. If $(2+\sin x) \frac{d y}{d x}+(y+1) \cos x=0$ and $y(0)=1$, then $y\left(\frac{\pi}{2}\right)$ is equal to :
(1) $1 / 3$
(2) $-2 / 3$
(3) $-1 / 3$
(4) $4 / 3$
[2017]
2. If a curve $y=f(x)$ passes through the point ($1,-1$) and satisfies the differential equation, $y(1+x y) d x=x d y$, then $f\left(-\frac{1}{2}\right)$ is equal to :
(1) $-4 / 5$
(2) $2 / 5$
(3) $4 / 5$
(4) $-2 / 5$
[2016]
3. Let $y(x)$ be the solution of the differential equation $(x \log x) \frac{d y}{d x}+y=2 x \log x,(x \geq 1)$. Then $y(e)$ is equal to :
(1) 0
(2) 2
(3) $2 e$
(4) e
[2015]
4. Let the population of rabbits surviving at a time t be governed by the differential equation
$\frac{d p(t)}{d t}=\frac{1}{2} p(t)-200$. If $p(0)=100$, then $p(t)$ equals
(1) $400-300 \mathrm{e}^{\mathrm{t} / 2}$
(2) $300-200 \mathrm{e}^{-\mathrm{t} / 2}$
(3) $600-500 e^{t / 2}$
(4) $400-300 \mathrm{e}^{-\mathrm{t} / 2}$
[2014]
5. At present, a firm is manufacturing 2000 items. It is estimated that the rate of change of production P w.r.t. additional number of workers x is given by $\frac{d P}{d x}=100-12 \sqrt{x}$. If the firm employs 25 more workers, then the new level of production of items is

MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

(1) 3000
(2) 3500
(3) 4500
(4) 2500
[2013]
6. A spherical baloon is filled with 4500π cubic meters of helium gas. If a leak in the balloon causes the gas to escape at the rate of 72π cubic metres per minute, then the rate (in meters per minute) at which the radius of the balloon decreases 49 minutes after the leakage began is
(1) $2 / 9$
(2) $9 / 2$
(3) $9 / 7$
(4) $7 / 9$
7. The population $p(t)$ at time t of a certain mouse species satisfies the differential equation $\frac{d p(t)}{d t}=0.5 p(t)-450$. If $p(0)=850$, then the time at which the population becomes zero is
(1) $\frac{1}{2} \ln 18$
(2) $\ln 18$
(3) $2 \ln 18$
(4) $\ln 9$.
[2012]
8. Consider the differential equation $y^{2} d x+\left(x-\frac{1}{y}\right) d y=0$. If $y(1)=1$, then x is given by
(1) $1+\frac{1}{y}-\frac{e^{1 / y}}{e}$
(2) $1-\frac{1}{y}+\frac{e^{1 / y}}{e}$
(3) $4-\frac{2}{y}-\frac{e^{1 / y}}{e}$
(4) $3-\frac{1}{y}+\frac{e^{1 / y}}{e}$
[2011]
9. Solution of the differential equation $\cos x d y=y(\sin x-y) d x, 0<x<\frac{\pi}{2}$ is
(1) $y \sec x=\tan x+c$
(2) $y \tan x=\sec x+c$
(3) $\tan x=(\sec x+c) y$
(4) $\sec x=(\tan x+c) y$
[2010]
10. The differential equation which represents the family of curves $y=c_{1} e^{c_{2} x}$, where c_{1} and c_{2} are arbitrary constants is
(1) $y^{\prime}=y^{2}$
(2) $y^{\prime \prime}=y^{\prime} y$
(3) $y y^{\prime \prime}=y^{\prime}$
(4) $y y^{\prime \prime}=\left(y^{\prime}\right)^{2}$
[2009]

MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

11. The solution of the differential equation $\frac{d y}{d x}=\frac{x+y}{x}$ satisfying the condition $\mathrm{y}(1)=1$ is
(1) $y=\ln x+x$
(2) $y=x \ln x+x^{2}$
(3) $y=x e^{(x-1)}$
(4) $y=x \ln x+x$
[2008]
12. The differential equation of the family of circles with fixed radius 5 units and centre on the line y $=2$ is
(1) $(x-2) y^{\prime 2}=25-(y-2)^{2}$
(2) $(y-2) y^{\prime 2}=25-(y-2)^{2}$
(3) $(y-2)^{2} y^{\prime 2}=25-(y-2)^{2}$
(4) $(x-2)^{2} y^{\prime 2}=25-(y-2)^{2}$
[2008]
13. The normal to a curve at $\mathrm{P}(\mathrm{x}, \mathrm{y})$ meets the x -axis at G . If the distance of G from the origin is twice the abscissa of P, then the curve is
(1) an ellipse
(2) a parabola
(3) a circle
(4) a hyperbola
[2007]
14. The differential equation of all circles passing through the origin and having their centres on the x-axis is
(1) $x^{2}=y^{2}+x y \frac{d y}{d x}$
(2) $x^{2}=y^{2}+3 x y \frac{d y}{d x}$
(3) $y^{2}=x^{2}+2 x y \frac{d y}{d x}$
(4) $y^{2}=x^{2}-2 x y \frac{d y}{d x}$
[2007]
15. The differential equation whose solution is $\mathrm{Ax}^{2}+\mathrm{By}^{2}=1$, where A and B are arbitrary constants is of
(1) second order and second degree
(2) first order and second degree
(3) first order and first degree
(4) second order and first degree
[2006]
16. The differential equation representing the family of curves $y^{2}=2 c(x+\sqrt{c})$, where $c>0$, is a parameter, is of order and degree as follows:
(1) order 1, degree 2
(2) order 1, degree 1
(3) order 1, degree 3
(4) order 2, degree 2
[2005]
17. If $x \frac{d y}{d x}=y(\log y-\log x+1)$, then the solution of the equation is
(1) $y \log \left(\frac{x}{y}\right)=c x$
(2) $x \log \left(\frac{y}{x}\right)=c y$
(3) $\log \left(\frac{y}{x}\right)=c x$
(4) $\log \left(\frac{x}{y}\right)=c y$
[2005]
18. The differetnatial equation for the family of curves $x^{2}+y^{2}-2 a y=0$, where a is an arbitrary constant is
(1) $2\left(x^{2}-y^{2}\right) y^{\prime}=x y$
(2) $2\left(x^{2}+y^{2}\right) y^{\prime}=x y$
(3) $\left(x^{2}-y^{2}\right) y^{\prime}=2 x y$
(4) $\left(x^{2}+y^{2}\right) y^{\prime}=2 x y$
[2004]
19. The solution of the differential equation $y d x+\left(x+x^{2} y\right) d y=0$ is
(1) $-\frac{1}{x y}=C$
(3) $\frac{1}{x y}+\log y=C$
(2)

(4) $\log y=C x$
[2004]
20. The degree and order of the differential equation of the family of all parabolas whose axis is x axis, are respectively
(1) 2,1
(2) 1,2
(3) 3,2
(4) 2,3
[2003]
21. The solution of the differential equation $\left(1+y^{2}\right)+\left(x-e^{\tan ^{-1} y}\right) \frac{d y}{d x}=0$, is
(1) $(x-2)=k e^{-\tan ^{-1} y}$
(2) $2 x e^{2 \tan ^{-1} y}=e^{2 \tan ^{-1} y}+k$
(3) $x e^{\tan ^{-1} y}=\tan ^{-1} y+k$
(4) $x e^{2 \tan ^{-1} y}=e^{\tan ^{-1} y}+k$
[2003]
22. The solution of the equation $\frac{d^{2} y}{d x^{2}}=e^{-2 x}$
(1) $\frac{1}{4} e^{-2 x}$
(2) $\frac{1}{4} e^{-2 x}+c x+d$
(3) $\frac{1}{4} e^{-2 x}+c x^{2}+d$
(4) $\frac{1}{4} e^{-2 x}+c+d$
[2002]

MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

23. The order and degree of the differential equation $\left(1+3 \frac{d y}{d x}\right)^{2 / 3}=4 \frac{d^{3} y}{d x^{3}}$ are
(1) $1,2 / 3$
(2) 3,1
(3) 3,3
(4) 1,2
[2002]

Mathematics for IIT-JEE by MANISH KALIA (B.Tech Delhi College Of Engineering) PH:9878146388,9464551253|www.iitmathematics.com,www.alphaclasses.com

