<u>Circle</u>

JEE-MAINS (PREVIOUS YEAR)

MCQ Single Correct

1.	The radius of a circle, having minimum area, w y = x is :	hich touches the curve $y = 4 - x$	c^2 and the lines
	(1) $2(\sqrt{2}+1)$	(2) $2(\sqrt{2}-1)$)
	(3) $4(\sqrt{2}-1)$	(4) $4(\sqrt{2}+1)$	[2017]
2.	If one of the diameters of the circle , given by the equation , $x^2 + y^2 - 4x + 6y - 12 = 0$, is a chord of the circle S , whose centre is at (-3,2), then the radius of S is :		
	(1) 5√3	(2) 5	
	(3) 10	(4) 5√2	[2016]
3.	The number of common tangents to the circles $x^2 + y^2 + 6x + 18y + 26 = 0$, is :	$x^{2} + y^{2} - 4x - 6y - 12 = 0$ and	
	(1) 2	(2) 3	
	(3) 4	(4) 1	[2015]
4.	Let C be the circle with centre at (1,1) and radius =1. If T is the circle centred at (0,y) , passing through origin and touching the circle C externally, then the radius of T is equal to		
	(1) $\frac{\sqrt{3}}{\sqrt{2}}$	(2) $\frac{\sqrt{3}}{2}$	
	(3) $\frac{1}{2}$	(4) $\frac{1}{4}$	[2014]

- 5. The circle passing through (1,-2) and touching the axis of x at (3,0) also passes through the point
 - (1) (2,-5) (2) (5,-2)

Mathematics for IIT-JEE by MANISH KALIA (B.Tech Delhi College Of Engineering) PH:9878146388,9464551253|www.iitmathematics.com,www.alphaclasses.com <u>SCO 43,TOP FLOOR,SECTOR 41-D,CHANDIGARH</u>

(3)
$$(-2,5)$$
(4) $(-5,2)$ [2013]6.The length of the diameter of the circle which touches the x-axis at the point $(1,0)$ and passes through the point $(2,3)$ (1) $6/5$ (2) $5/3$ (3) $10/3$ (4) $3/5$ (2) $10/3$ (4) $3/5$ 7.The equation of the circle passing through the points $(1,0)$ and $(0,1)$ and having the smallest radius is(1) $x^2 + y^2 + 2x + 2y - 7 = 0$ (2) $x^2 + y^2 + x + y - 2 = 0$ (3) $x^2 + y^2 - 2x - 2y + 1 = 0$ (4) $x^2 + y^2 - x - y = 0$ (3) $x^2 + y^2 - 2x - 2y + 1 = 0$ (4) $x^2 + y^2 - x - y = 0$ (1) $-35 < m < 15$ (2) $15 < m < 65$ (3) $35 < m < 85$ (4) $-85 < m < -35$ (2) $15 < m < 65$ (3) $35 < m < 85$ (4) $-85 < m < -35$ (3) all except two values of p(2) all except one value of p(3) all except two values of p(4) exactly one value of p(3) all except two values of p(2) $(-3,4)$ (3) $(-3,-4)$ (2) $(-3,4)$ (3) $(-3,-4)$ (2) $(-3,4)$ (3) $(-3,-4)$ (2) $(-3,4)$ (3) $(-3,-4)$ (3) $(-3,-4)$ (4) $(3,4)$ [2008]

(1)
$$0 < k < \frac{1}{2}$$

(2) $k \ge \frac{1}{2}$
(3) $-\frac{1}{2} \le k \le \frac{1}{2}$
(4) $k \le \frac{1}{2}$
[2007]

12. If the lines 3x - 4y - 7 = 0 and 2x - 3y - 5 = 0 are two diameters of a circle of area 49π square units, the equation of the circle is

(1)
$$x^{2} + y^{2} + 2x - 2y - 47 = 0$$

(2) $x^{2} + y^{2} + 2x - 2y - 62 = 0$
(3) $x^{2} + y^{2} - 2x + 2y - 62 = 0$
(4) $x^{2} + y^{2} - 2x + 2y - 47 = 0$ [2006]

13. Let C be the circle with centre (0,0) and radius 3 units. The equation of the locus of the mid points of the chords of the circle C that subtend an angle of $\frac{2\pi}{3}$ at its centre is

(1)
$$x^{2} + y^{2} = \frac{3}{2}$$

(2) $x^{2} + y^{2} = 1$
(3) $x^{2} + y^{2} = \frac{27}{4}$
(4) $x^{2} + y^{2} = \frac{9}{4}$

14. If the circles $x^2 + y^2 + 2ax + cy + a = 0$ and $x^2 + y^2 - 3ax + dy - 1 = 0$ intersect in two distinct points P and Q then the line 5x + by - a = 0 passes through P and Q for

[2006]

- (1) exactly one value of a
 (2) no value of a
 (3) infinitely many values of a
 (4) exactly two values of a [2005]
- 15. A circle touches the x-axis and also touches the circle with centre at (0,3) and radius 2. The locus of the centre of the circle is
 - (1) an ellipse(2) a circle(3) a hyperbola(4) a parabola[2005]
- 16. If a circle passes through the point (a,b) and cuts the circle $x^2 + y^2 = p^2$ orthogonally, then the equation of the locus of its centre is [2005]

(1)
$$x^{2} + y^{2} - 3ax - 4by + (a^{2} + b^{2} - p^{2}) = 0$$
 (2) $2ax + 2by - (a^{2} - b^{2} + p^{2}) = 0$
(3) $x^{2} + y^{2} - 2ax - 3by + (a^{2} - b^{2} - p^{2}) = 0$ (4) $2ax + 2by - (a^{2} + b^{2} + p^{2}) = 0$

17. If a circle passes through the point (a,b) and cuts the circle $x^2 + y^2 = 4$ orthogonally, then the locus of its centre is [2004]

(1)
$$2ax + 2by + (a^2 + b^2 + 4) = 0$$
 (2) $2ax + 2by - (a^2 + b^2 + 4) = 0$

(3)
$$2ax - 2by + (a^2 + b^2 + 4) = 0$$
 (4) $2ax - 2by - (a^2 + b^2 + 4) = 0$

18. A variable circle passes through the fixed point A (p,q) and touches x-axis. The locus of the other end of the diameter through A is

(1)
$$(x-p)^2 = 4qy$$

(2) $(x-q)^2 = 4py$
(3) $(y-p)^2 = 4qx$
(4) $(y-q)^2 = 4px$

19. If the lines 2x+3y+1=0 and 3x-y-4=0 lie along diameters of a circle of circumference 10π , then the equation of the circle is

[2004]

[2004]

(4) $x^2 + y^2 + 2x - 2y - 23 = 0$ [2004]

(1) $x^2 + y^2 - 2x + 2y - 23 = 0$ (2) $x^2 + y^2 - 2x - 2y - 23 = 0$

(3)
$$x^2 + y^2 + 2x + 2y - 23 = 0$$

- 20. The intercept on the line y = x by the circle $x^2 + y^2 2x = 0$ is AB. Equation of the circle on AB as a diameter is
 - (1) $x^{2} + y^{2} x y = 0$ (2) $x^{2} + y^{2} - x + y = 0$ (3) $x^{2} + y^{2} + x + y = 0$ (4) $x^{2} + y^{2} + x - y = 0$
- 21. If the two circles $(x-1)^2 + (y-3)^2 = r^2$ and $x^2 + y^2 8x + 2y + 8 = 0$ intersect in two distinct points, then
 - (1) 2 < r < 8(3) r = 2(2) r < 2(4) r > 2[2003]

22. The lines 2x-3y = 5 and 3x-4y = 7 are diameters of a circle having area as 154 sq units. Then the equation of the circle is

- (1) $x^{2} + y^{2} + 2x 2y = 62$ (2) $x^{2} + y^{2} + 2x - 2y = 47$ (3) $x^{2} + y^{2} - 2x + 2y = 47$ (4) $x^{2} + y^{2} - 2x + 2y = 62$ [2003]
- 23. If the chord y = mx + 1 of the circle $x^2 + y^2 = 1$ subtends an angle of measure 45° at the major segment of the circle then the value of m is
 - (1) $2\pm\sqrt{2}$ (2) $-2\pm\sqrt{2}$

Mathematics for IIT-JEE by MANISH KALIA (B.Tech Delhi College Of Engineering) PH:9878146388,9464551253|www.iitmathematics.com,www.alphaclasses.com <u>SCO 43,TOP FLOOR,SECTOR 41-D,CHANDIGARH</u>

(3)
$$-1 \pm \sqrt{2}$$
 (4) none of these [2002]

- 24. The centres of a set of circles, each of radius 3, lie on the circle $x^2 + y^2 = 25$. The locus of any point in the set is
 - (1) $4 \le x^2 + y^2 \le 64$ (2) $x^2 + y^2 \le 25$
 - (3) $x^2 + y^2 \ge 25$ (4) $3 \le x^2 + y^2 \le 9$
- 25. The centre of the circle passing through (0,0) and (1,0) and touching the circle $y^2 = 9$ is
 - (1) $\left(\frac{1}{2}, \frac{1}{2}\right)$ (3) $\left(\frac{3}{2}, \frac{1}{2}\right)$ (2) $\left(\frac{1}{2}, -\sqrt{2}\right)$ (4) $\left(\frac{1}{2}, \frac{3}{2}\right)$ [2002]
- 26. The equation of a circle with origin as a centre and passing through equilateral triangle whose median is of length 3a is
 - (1) $x^{2} + y^{2} = 9a^{2}$ (2) $x^{2} + y^{2} = 16a^{2}$ (3) $x^{2} + y^{2} = 4a^{2}$ (4) $x^{2} + y^{2} = a^{2}$

[2002]

[2002]

