MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

Circle

JEE-MAINS (PREVIOUS YEAR)

MCQ Single Correct

1. The radius of a circle, having minimum area, which touches the curve $y=4-x^{2}$ and the lines $y=|x|$ is :
(1) $2(\sqrt{2}+1)$
(2) $2(\sqrt{2}-1)$
(3) $4(\sqrt{2}-1)$
(4)

[2017]
2. If one of the diameters of the circle, given by the equation, $x^{2}+y^{2}-4 x+6 y-12=0$, is a chord of the circle S, whose centre is at $(-3,2)$, then the radius of S is :
(1) $5 \sqrt{3}$
(2) 5
(3) 10
(4) $5 \sqrt{2}$
[2016]
3. The number of common tangents to the circles $x^{2}+y^{2}-4 x-6 y-12=0$ and $x^{2}+y^{2}+6 x+18 y+26=0$, is :
(1) 2
(2) 3
(3) 4
(4) 1
[2015]
4. Let C be the circle with centre at $(1,1)$ and radius $=1$. If T is the circle centred at $(0, y)$, passing through origin and touching the circle C externally, then the radius of T is equal to
(1) $\frac{\sqrt{3}}{\sqrt{2}}$
(2) $\frac{\sqrt{3}}{2}$
(3) $\frac{1}{2}$
(4) $\frac{1}{4}$
[2014]
5. The circle passing through $(1,-2)$ and touching the axis of x at $(3,0)$ also passes through the point
(1) $(2,-5)$
(2) $(5,-2)$

MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

(3) $(-2,5)$
(4) $(-5,2)$
[2013]
6. The length of the diameter of the circle which touches the x-axis at the point $(1,0)$ and passes through the point $(2,3)$
(1) $6 / 5$
(2) $5 / 3$
(3) $10 / 3$
(4) $3 / 5$
[2012]
7. The equation of the circle passing through the points $(1,0)$ and $(0,1)$ and having the smallest radius is
(1) $x^{2}+y^{2}+2 x+2 y-7=0$
(2) $x^{2}+y^{2}+x+y-2=0$
(3) $x^{2}+y^{2}-2 x-2 y+1=0$
(4) $x^{2}+y^{2}-x-y=0$
[2011]
8. The circle $x^{2}+y^{2}=4 x+8 y+5$ intersects the line $3 x-4 y=m$ at two distinct points if
(1) $-35<m<15$
(2) $15<m<65$
(3) $35<m<85$
(4) $-85<m<-35$
[2010]
9. If P and Q are the points of intersection of the circles $x^{2}+y^{2}+3 x+7 y+2 p-5=0$ and $x^{2}+y^{2}+2 x+2 y-p^{2}=0$, then there is a circle passing through P, Q and $(1,1)$ for
(1) all values of p
(2) all except one value of p
(3) all except two values of p
(4) exactly one value of p
[2009]
10. The point diametrically opposite to the point $\mathrm{P}(1,0)$ on the circle $x^{2}+y^{2}+2 x+4 y-3=0$ is
(1) $(3,-4)$
(2) $(-3,4)$
(3) $(-3,-4)$
(4) $(3,4)$
[2008]
11. Consider a family of circles which are passing through the point $(-1,1)$ and are tangent to x-axis. If (h, k) are the co-ordinates of the centre of the circles, then the set of values of k is given by the interval
(1) $0<k<1 / 2$
(2) $k \geq 1 / 2$
(3) $-1 / 2 \leq k \leq 1 / 2$
(4) $k \leq 1 / 2$
[2007]

MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

12. If the lines $3 x-4 y-7=0$ and $2 x-3 y-5=0$ are two diameters of a circle of area 49π square units, the equation of the circle is
(1) $x^{2}+y^{2}+2 x-2 y-47=0$
(2) $x^{2}+y^{2}+2 x-2 y-62=0$
(3) $x^{2}+y^{2}-2 x+2 y-62=0$
(4) $x^{2}+y^{2}-2 x+2 y-47=0[2006]$
13. Let C be the circle with centre $(0,0)$ and radius 3 units. The equation of the locus of the mid points of the chords of the circle C that subtend an angle of $\frac{2 \pi}{3}$ at its centre is
(1) $x^{2}+y^{2}=\frac{3}{2}$
(2) $x^{2}+y^{2}=1$
(3) $x^{2}+y^{2}=\frac{27}{4}$
(4) $x^{2}+y^{2}=\frac{9}{4}$
[2006]
14. If the circles $x^{2}+y^{2}+2 a x+c y+a=0$ and $x^{2}+y^{2}-3 a x+d y-1=0$ intersect in two distinct points P and Q then the line $5 x+b y-a=0$ passes through P and Q for
(1) exactly one value of a
(2) no value of a
(3) infinitely many values of a
(4) exactly two values of a
[2005]
15. A circle touches the x-axis and also touches the circle with centre at $(0,3)$ and radius 2 . The locus of the centre of the circle is
(1) an ellipse
(2) a circle
(3) a hyperbola
(4) a parabola
[2005]
16. If a circle passes through the point (a, b) and cuts the circle $x^{2}+y^{2}=p^{2}$ orthogonally, then the equation of the locus of its centre is
[2005]
(1) $x^{2}+y^{2}-3 a x-4 b y+\left(a^{2}+b^{2}-p^{2}\right)=0$
(2) $2 a x+2 b y-\left(a^{2}-b^{2}+p^{2}\right)=0$
(3) $x^{2}+y^{2}-2 a x-3 b y+\left(a^{2}-b^{2}-p^{2}\right)=0$
(4) $2 a x+2 b y-\left(a^{2}+b^{2}+p^{2}\right)=0$
17. If a circle passes through the point (a, b) and cuts the circle $x^{2}+y^{2}=4$ orthogonally, then the locus of its centre is
[2004]
(1) $2 a x+2 b y+\left(a^{2}+b^{2}+4\right)=0$
(2) $2 a x+2 b y-\left(a^{2}+b^{2}+4\right)=0$

MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

(3) $2 a x-2 b y+\left(a^{2}+b^{2}+4\right)=0$
(4) $2 a x-2 b y-\left(a^{2}+b^{2}+4\right)=0$
18. A variable circle passes through the fixed point $A(p, q)$ and touches x-axis. The locus of the other end of the diameter through A is
(1) $(x-p)^{2}=4 q y$
(2) $(x-q)^{2}=4 p y$
(3) $(y-p)^{2}=4 q x$
(4) $(y-q)^{2}=4 p x$
[2004]
19. If the lines $2 x+3 y+1=0$ and $3 x-y-4=0$ lie along diameters of a circle of circumference 10π, then the equation of the circle is
(1) $x^{2}+y^{2}-2 x+2 y-23=0$
(2) $x^{2}+y^{2}-2 x-2 y-23=0$
(3) $x^{2}+y^{2}+2 x+2 y-23=0$
(4) $x^{2}+y^{2}+2 x-2 y-23=0$
20. The intercept on the line $y=x$ by the circle $x^{2}+y^{2}-2 x=0$ is $A B$. Equation of the circle on $A B$ as a diameter is
(1) $x^{2}+y^{2}-x-y=0$
(2) $x^{2}+y^{2}-x+y=0$
(3) $x^{2}+y^{2}+x+y=0$
(4) $x^{2}+y^{2}+x-y=0$
[2004]
21. If the two circles $(x-1)^{2}+(y-3)^{2}=r^{2}$ and $x^{2}+y^{2}-8 x+2 y+8=0$ intersect in two distinct points, then
(1) $2<r<8$
(2) $r<2$
(3) $x=2$
(4) $r>2$
[2003]
22. The lines $2 x-3 y=5$ and $3 x-4 y=7$ are diameters of a circle having area as 154 sq units. Then the equation of the circle is
(1) $x^{2}+y^{2}+2 x-2 y=62$
(2) $x^{2}+y^{2}+2 x-2 y=47$
(3) $x^{2}+y^{2}-2 x+2 y=47$
(4) $x^{2}+y^{2}-2 x+2 y=62$
[2003]
23. If the chord $y=m x+1$ of the circle $x^{2}+y^{2}=1$ subtends an angle of measure 45° at the major segment of the circle then the value of m is
(1) $2 \pm \sqrt{2}$
(2) $-2 \pm \sqrt{2}$

MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

(3) $-1 \pm \sqrt{2}$
(4) none of these
[2002]
24. The centres of a set of circles, each of radius 3 , lie on the circle $x^{2}+y^{2}=25$. The locus of any point in the set is
(1) $4 \leq x^{2}+y^{2} \leq 64$
(2) $x^{2}+y^{2} \leq 25$
(3) $x^{2}+y^{2} \geq 25$
(4) $3 \leq x^{2}+y^{2} \leq 9$
25. The centre of the circle passing through $(0,0)$ and $(1,0)$ and touching the circle $y^{2}=9$ is
(1) $\left(\frac{1}{2}, \frac{1}{2}\right)$
(2) $\left(\frac{1}{2},-\sqrt{2}\right)$
(3) $\left(\frac{3}{2}, \frac{1}{2}\right)$
(4) $\left(\frac{1}{2}, \frac{3}{2}\right)$
[2002]
26. The equation of a circle with origin as a centre and passing through equilateral triangle whose median is of length $3 a$ is
(1) $x^{2}+y^{2}=9 a^{2}$
(2) $x^{2}+y^{2}=16 a^{2}$
(3) $x^{2}+y^{2}=4 a^{2}$
(4) $x^{2}+y^{2}=a^{2}$
[2002]

