Binomial Theorem

JEE-MAINS (PREVIOUS YEAR)

MCQ-Single Correct

Mathematics for IIT-JEE by MANISH KALIA (B.Tech Delhi College Of Engineering) PH:9878146388,9464551253 | www.iitmathematics.com,www.alphaclasses.com <u>SCO 43,TOP FLOOR,SECTOR 41-D,CHANDIGARH</u>

10. In the binomial expansion of $(a-b)^n$, $n \ge 5$ the sum of 5th and 6th terms is zero, then a/b equals

(1)
$$\frac{5}{n-4}$$
 (2) $\frac{6}{n-5}$

Mathematics for IIT-JEE by MANISH KALIA (B.Tech Delhi College Of Engineering) PH:9878146388,9464551253 | www.iitmathematics.com,www.alphaclasses.com <u>SCO 43,TOP FLOOR,SECTOR 41-D,CHANDIGARH</u>

(3)
$$\frac{n-5}{6}$$
 (4) $\frac{n-4}{5}$ [2007]

For natural numbers m, n if $(1-y)^m (1+y)^n = 1 + a_1y + a_2y^2 + \dots$, and $a_1 = a_2 = 10$, then (m,n) 11. is (1) (20, 45)(2) (35,20)(3) (45,35) (4) (35,45) [2006] The value of ${}^{50}C_4 + \sum_{r=1}^{6} {}^{56-r}C_3$ is 12. (2) ⁵⁵ ((1) ${}^{55}C_4$ (3) ${}^{56}C_3$ ⁵⁶([2005] (4)If the coefficient of x⁷ in $\left| ax^2 + \left(\frac{1}{bx}\right) \right|^{11}$ equals the coefficient of x⁷ in $\left[ax^2 - \left(\frac{1}{bx}\right) \right]^{11}$, then a 13. and b satisfy the relation (2) a + b = 1 (1) a - b = 1(3) $\frac{a}{b} = 1$ (4) ab = 1 [2005] If x is so small that x³ and higher powers of x may be neglected, then $\frac{(1+x)^{3/2} - (1+x/2)^3}{(1-x)^{1/2}}$ 14. may be approximated as (2) $3x + \frac{3}{8}x^2$ (4) $\frac{x}{2} - \frac{3}{8}x^2$ (3)[2005] The coefficient of the middle term in the binomial expansion in powers of x of $(1 + \alpha x)^4$ and of 15.

- $\left(1\!-\!lpha x
 ight)^{\!6}$ is the same if lpha equals
- (1) -5/3 (2) 3/5
- (3) 3/10(4) 10/3

Mathematics for IIT-JEE by MANISH KALIA (B.Tech Delhi College Of Engineering) PH:9878146388,9464551253 | www.iitmathematics.com,www.alphaclasses.com SCO 43, TOP FLOOR, SECTOR 41-D, CHANDIGARH

[2004]

16.	The coefficient of x^n in expansion of $(1 + x)(1 - x)^n$ is		
	(1) (n - 1)	(2) (-1) ⁿ (1-n)	
	(3) $(-1)^{n-1}(n-1)^2$	(4) $(-1)^{n-1} n$	[2004]
17.	If $S_n = \sum_{r=0}^n \frac{1}{{}^nC_r}$ and $t_n = \sum_{r=0}^n \frac{r}{{}^nC_r}$, then $\frac{t_n}{S_n}$ is equal to		
	(1) n/2	(2) n/2 -1	
	(3) n-1	(4) n – ½	[2004]
18.	The number of integral terms in the expansion of $\left(\sqrt{3} + \sqrt[8]{5}\right)^{256}$ is		
	(1) 32	(2) 33	
	(3) 34	(4) 35	[2003]
19.	If x is positive, the first negative term in the expansion of $(1 + x)^{27/5}$ is		
	(1) 7 th term	(2) 5 th term	
	(3) 8 th term	(4) 6 th term	[2003]
20.	The positive integer just greater than $(1 + .0001)^{1000}$ is		
	(1) 4	(2) 5	
	(3) 2	(4) 3	[2002]
21.	r and n are positive integers $r > 1$, $n > 2$ and coeffient of $(r + 2)^{th}$ term and $3r^{th}$ term in the expansion of $(1 + x)^{2n}$ are equal, then n equals		
	(1) 3r	(2) 3r + 1	
	(3) 2r	(4) 2r + 1	[2002]
22.	The coefficients of x^{p} and x^{q} in the expansion of $(1 + x)^{p+q}$ are		
	(1) equal	(2) equal with opposite signs	
	(3) reciprocals of each other	(4) none of these	[2002]
23.	If the sum of the coefficients in the expansion in the expansion is	of $(a+b)^n$ is 4096, then the greatest coefficients	efficient

(1)	1594	(2) 792
· /		()

(3) 924 (4) 2924 **[2002]**

Assertion – Reason Type

1. Let
$$S_{1} = \sum_{j=1}^{10} j(j-1)^{10}C_{j}$$
, $S_{2} = \sum_{j=1}^{10} j^{10}C_{j}$ and $S_{3} = \sum_{j=1}^{10} j^{2} {}^{10}C_{j}$ [2010]
Statement - I: $S_{3} = 55 \times 2^{9}$
Statement - II: $S_{1} = 90 \times 2^{8}$ and $S_{2} = 10 \times 2^{8}$
2. Statement -I: $\sum_{r=0}^{n} (r+1)^{n}C_{r} = (n+2)2^{n-1}$. [2008]
Statement -II: $\sum_{r=0}^{n} (r+1)^{n}C_{r}x^{r} = (1+x)^{n} + nx(1+x)^{n-1}$

Mathematics for IIT-JEE by MANISH KALIA (B.Tech Delhi College Of Engineering) PH:9878146388,9464551253 | www.iitmathematics.com,www.alphaclasses.com <u>SCO 43,TOP FLOOR,SECTOR 41-D,CHANDIGARH</u>