MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

Binomial Theorem

JEE-MAINS (PREVIOUS YEAR)

MCQ-Single Correct

1. The value of $\left({ }^{21} C_{1}-{ }^{10} C_{1}\right)+\left({ }^{21} C_{2}-{ }^{10} C_{2}\right)+\left({ }^{21} C_{3}-{ }^{10} C_{3}\right)+\left({ }^{21} C_{4}-{ }^{10} C_{4}\right)+\ldots+$ $\left({ }^{21} C_{10}-{ }^{10} C_{10}\right)$ is :
(1) $2^{21}-2^{11}$
(2) $2^{21}-2^{10}$
(3) $2^{20}-2^{9}$
(4) $2^{20}-2^{10}$
[2017]
2. If the number of terms in the expansion of $\left(1-\frac{2}{x}+\frac{4}{x^{2}}\right)^{n}, x \neq 0$, is 28 , then the sum of the coefficients of all the terms in this expansion, is :
(1) 2187
(2) 243
(3) 729
(4) 64
[2016]
3. The sum of coefficients of integral powers of x in the binomial expansion of $(1-2 \sqrt{x})^{50}$ is :
(1) $\frac{1}{2}\left(3^{50}\right)$
(2) $\frac{1}{2}\left(3^{50}-1\right)$
(3) $\frac{1}{2}\left(2^{50}+1\right)$
(4) $\frac{1}{2}\left(3^{50}+1\right)$
[2015]
4. If the coefficients of x^{3} and x^{4} in the expansion of $\left(1+a x+b x^{2}\right)(1-2 x)^{18}$ in powers of x are both zero, then (a, b) is equal to
(1) $\left(16, \frac{251}{3}\right)$
(2) $\left(14, \frac{251}{3}\right)$
(3) $\left(14, \frac{272}{3}\right)$
(4) $\left(16, \frac{272}{3}\right)$
[2014]
5. The term independent of x in the expansion of $\left(\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right)^{10}$ is
(1) 120
(2) 210
(3) 310
(4) 4
[2013]
6. If n is a positive integer, then $(\sqrt{3}+1)^{2 n}-(\sqrt{3}-1)^{2 n}$ is
(1) an even positive integer.
(2) a rational number other than positive integers.
(3) an irrational number.
(4) an odd positive integer.
[2012]
7. The remainder left out when $8^{2 n}-(62)^{2 n+1}$ is divided by 9 is
(1) 0
(2) 2
(3) 7
(4) 8
[2009]
8. In a binomial distribution $B\left(n, p=\frac{1}{4}\right)$, if the probability of at least one success is greater than or equal to $\frac{9}{10}$, then n is greater than
(1) $\frac{1}{\log _{10} 4-\log _{10} 3}$
(2) $\frac{1}{\log _{10} 4+\log _{10} 3}$
(3)

(4) $\frac{4}{\log _{10} 4-\log _{10} 3}$
[2009]
9. The sum of the series ${ }^{20} C_{0}-{ }^{20} C_{1}+{ }^{20} C_{2}-{ }^{20} C_{3}+\ldots .+{ }^{20} C_{10}$ is
(1) $-{ }^{20} C_{10}$
(2) $\left(\frac{1}{2}\right){ }^{20} C_{10}$
(3) 0
(4) ${ }^{20} C_{10}$
[2007]
10. In the binomial expansion of $(a-b)^{n}, \mathrm{n} \geq 5$ the sum of $5^{\text {th }}$ and $6^{\text {th }}$ terms is zero, then a/b equals
(1) $\frac{5}{n-4}$
(2) $\frac{6}{n-5}$
(3) $\frac{n-5}{6}$
(4) $\frac{n-4}{5}$
[2007]
11. For natural numbers m, n if $(1-y)^{m}(1+y)^{n}=1+a_{1} y+a_{2} y^{2}+\ldots .$. , and $\mathrm{a}_{1}=\mathrm{a}_{2}=10$, then (m, n) is
(1) $(20,45)$
(2) $(35,20)$
(3) $(45,35)$
(4) $(35,45)$
[2006]
12. The value of ${ }^{50} C_{4}+\sum_{r=1}^{6}{ }^{56-r} C_{3}$ is
(1) ${ }^{55} C_{4}$
(2) ${ }^{55} C_{3}$
(3) ${ }^{56} C_{3}$
(4)
(4) ${ }^{56} C$
[2005]
13. If the coefficient of x^{7} in $\left[a x^{2}+\left(\frac{1}{b x}\right)\right]^{11}$ equals the coefficient of x^{-7} in $\left[a x^{2}-\left(\frac{1}{b x}\right)\right]^{11}$, then a and b satisfy the relation
(1) $a-b=1$
(2) $a+b=1$
(3) $\frac{a}{b}=1$
(4) $a b=1$
[2005]
14. If x is so small that x^{3} and higher powers of x may be neglected, then $\frac{(1+x)^{3 / 2}-(1+x / 2)^{3}}{(1-x)^{1 / 2}}$ may be approximated as
(1) $1-\frac{3}{8} x^{2}$
(2) $3 x+\frac{3}{8} x^{2}$
(3) $-\frac{3}{8} x^{2}$
(4) $\frac{x}{2}-\frac{3}{8} x^{2}$
[2005]
15. The coefficient of the middle term in the binomial expansion in powers of x of $(1+\alpha x)^{4}$ and of $(1-\alpha x)^{6}$ is the same if α equals
(1) $-5 / 3$
(2) $3 / 5$
(3) $-3 / 10$
(4) $10 / 3$
[2004]

MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

16. The coefficient of x^{n} in expansion of $(1+x)(1-x)^{n}$ is
(1) $(n-1)$
(2) $(-1)^{n}(1-n)$
(3) $(-1)^{n-1}(n-1)^{2}$
(4) $(-1)^{n-1} n$
[2004]
17. If $S_{n}=\sum_{r=0}^{n} \frac{1}{{ }^{n} C_{r}}$ and $t_{n}=\sum_{r=0}^{n} \frac{r}{{ }^{n} C_{r}}$, then $\frac{t_{n}}{S_{n}}$ is equal to
(1) $n / 2$
(2) $n / 2-1$
(3) $n-1$
(4) $n-1 / 2$
[2004]
18. The number of integral terms in the expansion of $(\sqrt{3}+\sqrt[8]{5})^{256}$ is
(1) 32
(2) 33
(3) 34
(4) 35
[2003]
19. If x is positive, the first negative term in the expansion of $(1+x)^{27 / 5}$ is
(1) $7^{\text {th }}$ term
(2) $5^{\text {th }}$ term
(3) $8^{\text {th }}$ term
(4) $6^{\text {th }}$ term
[2003]
20. The positive integer just greater than $(1+.0001)^{1000}$ is
(1) 4
(2) 5
(3) 2
(4) 3
[2002]
21. r and n are positive integers $r>1, n>2$ and coeffient of $(r+2)^{\text {th }}$ term and $3 r^{\text {th }}$ term in the expansion of $(1+x)^{2 n}$ are equal, then n equals
(1) $3 r$
(2) $3 r+1$
(3) $2 r$
(4) $2 r+1$
[2002]
22. The coefficients of x^{p} and x^{q} in the expansion of $(1+x)^{p+q}$ are
(1) equal
(2) equal with opposite signs
(3) reciprocals of each other
(4) none of these
[2002]
23. If the sum of the coefficients in the expansion of $(a+b)^{n}$ is 4096 , then the greatest coefficient in the expansion is
(1) 1594
(2) 792
(3) 924
(4) 2924
[2002]

Assertion - Reason Type

1. Let $\mathrm{S}_{1}=\sum_{j=1}^{10} j(j-1){ }^{10} C_{j}, \mathrm{~S}_{2}=\sum_{j=1}^{10} j{ }^{10} C_{j}$ and $\mathrm{S}_{3}=\sum_{j=1}^{10} j^{2}{ }^{10} C_{j}$
[2010]

Statement-I: $\mathrm{S}_{3}=55 \times 2^{9}$
Statement - II: $\mathrm{S}_{1}=90 \times 2^{8}$ and $\mathrm{S}_{2}=10 \times 2^{8}$
2. Statement-I : $\sum_{r=0}^{n}(r+1)^{n} C_{r}=(n+2) 2^{n-1}$.

Statement-II : $\sum_{r=0}^{n}(r+1)^{n} C_{r} x^{r}=(1+x)^{n}+n x(1+x)^{n}$

