Area

JEE-MAINS (PREVIOUS YEAR)

MCQ - Single Correct

1. The area (in sq. units) of the region $\left\{(x, y): x \geq 0, x+y \leq 3, x^{2} \leq 4 y\right.$ and $\left.y \leq 1+\sqrt{x}\right\}$ is :
(1) $\frac{59}{12}$
(2) $\frac{3}{2}$
(3) $\frac{7}{3}$
(4) $\frac{5}{2}$
[2017]
2. The area (in sq. units) of the region $\left\{(x, y): y^{2} \geq 2 x\right.$ and $\left.x^{2}+y^{2} \leq 4 x, x \geq 0, y \geq 0\right\}$ is :
(1) $\pi-\frac{8}{3}$
(2)
$\pi-\frac{4 \sqrt{2}}{3}$
(3) $\frac{\pi}{2}-\frac{2 \sqrt{2}}{3}$
(4) $\pi-\frac{4}{3}$
[2016]
3. The area (in square units) of the region described by $\left\{(x, y): y^{2} \leq 2 x\right.$ and $\left.y \geq 4 x-1\right\}$ is :
(1) $\frac{5}{64}$
(2) $\frac{15}{64}$
(3) $\frac{9}{32}$
(4) $\frac{7}{32}$
[2015]
4. The area of the region described by $A=\left\{(x, y): x^{2}+y^{2} \leq 1\right.$ and $\left.y^{2} \leq 1-x\right\}$ is
[2014]
(1) $\frac{\pi}{2}+\frac{4}{3}$
(2) $\frac{\pi}{2}-\frac{4}{3}$
(3) $\frac{\pi}{2}-\frac{2}{3}$
(4) $\frac{\pi}{2}+\frac{2}{3}$
5. The area (in square units) bounded by the curves $y=\sqrt{x}, 2 y-x+3=0$, x-axis, and lying in the first quadrant is
(1) 36
(2) 18
(3) $\frac{27}{4}$

$$
\text { (4) } 9
$$

[2013]
6. The area bounded between the parabola $x^{2}=\frac{y}{4}$ and $x^{2}=9 y$ and the straight line $y=2$ is
(1) $\frac{20 \sqrt{2}}{3}$
(2) $10 \sqrt{2}$
(3) $20 \sqrt{2}$
(4) $\frac{10 \sqrt{2}}{3}$
[2012]
7. The area bounded by the curves $y^{2}=4 x$ and $x^{2}=4 y$ is
(1) $8 / 3$
(2) 0
(3) $32 / 3$
(4) $16 / 3$
[2011]
8. The area bounded by the curves $y=\cos x$ and $y=\sin x$ between the ordinates $x=0$ and $x=3 \pi / 2$ is
(1) $4 \sqrt{2}+2$
(2) $4 \sqrt{2}-1$
(3) $4 \sqrt{2}+1$
(4) $4 \sqrt{2}-2$
[2010]
9. The area of the plane region bounded by the curves $x+2 y^{2}=0$ and $x+3 y^{2}=1$ is equal to
(1) $5 / 3$
(2) $1 / 3$
(3) $2 / 3$
(4) $4 / 3$
[2008]
10. The area enclosed between the curve $y=\log _{e}(x+e)$ and the coordinate axes is
(1) 1
(2) 2
(3) 3
(4) 4
[2005]
11. The parabolas $y^{2}=4 x$ and $x^{2}=4 y$ divide the square region bounded by the lines $x=4, y=4$ and the coordinate axes. If S_{1}, S_{2}, S_{3} are respectively the areas of these parts numbered from top to bottom; then $S_{1}: S_{2}: S_{3}$ is
(1) $1: 2: 1$
(2) $1: 2: 3$
(3) $2: 1: 2$
(4) $1: 1: 1$
[2005]

MATHEMATICS LECTURES FOR IIT-JEE BY MANISH KALIA

12. Let $f(x)$ be a non-negative continuous function such that the area bounded by the curve $y=f(x)$, x-axis and the ordinates $x=3: \sqrt{2}$ and $x=\beta>\pi / 4$ is $\left(\beta \sin \beta+\frac{\pi}{4} \cos \beta+\sqrt{2} \beta\right)$. Then $f(\pi / 2)$ is
(1) $\left(\frac{\pi}{4}+\sqrt{2}-1\right)$
(2) $\left(\frac{\pi}{4}-\sqrt{2}+1\right)$
(3) $1+\frac{1}{4.2!}+\frac{1}{16.4!}+\frac{1}{64.6!}+$
(4) $\left(1-\frac{\pi}{4}+\sqrt{2}\right)$
[2005]
13. The area of the region bounded by the curves $y=|x-2|, x=1, x=3$ and the x-axis is
(1) 1
(2) 2
(3) 3
(4) 4
[2004]
14. The area of the region bounded by the curves $y=|x-1|$ and $y=3-|x|$ is
(1) 2 sq units
(2) 3 sq units
(3) 4 sq units
(4) 6 squnits
[2003]
15. The area bounded by the curves $y=\ln x, y=\ln |x|, y=|\ln x|$ and $y=|\ln ||x|$ is
(1) 4 sq. units
(2) 6 sq. units
(3) 10 sq. units
(4) none of these
[2002]
