PERMUTATION AND COMBINATIONS

Permutation :

Definition : The ways of arranging or selecting a smaller or an equal number of persons or objects at a time from a given group of person or objects with due regard being paid to the order of arrangement or selection are called the (different) permutations.

Number of permutations without repetition :

- Arranging n objects, taken r at a time equivalent to filling r places from n things.
r-places :

Number of choice
The number of ways of arranging $=$ The number of ways of filling r places.
$=n(n-1)(n-2) \ldots \ldots . .(n-r+1)$
$=\frac{n(n-1)(n-2) \ldots .(n-r+1)((n-r)!)}{(n-r)!}=\frac{n!}{(n-r)!}$
$={ }^{n} P_{r}$

- The number of arrangements of n different objects taken all at a time $={ }^{n} \mathrm{P}_{\mathrm{n}}=\mathrm{n}$!
(i) ${ }^{n} P_{0}=\frac{\mathrm{n}!}{\mathrm{n}!}=1 ;{ }^{\mathrm{n}} \mathrm{P}_{\mathrm{r}}=\mathrm{n} .{ }^{\mathrm{n}-1} \mathrm{P}_{\mathrm{r}-1}$
(ii) $0!=1 ; \frac{1}{(-\mathrm{r})!}=0$ or $(-\mathrm{r})!=\infty(\mathrm{r} \in \mathrm{N})$

Number of permutations with repetition :

- The number of permutations (arrangements) of n different objects, taken r at a time, when each object may occur once, twice, thrice, upto r times in any arrangement $=$ The number of ways of filling r places where each place can be filled by any one of n objects.

> r-places:

Number of choices :
The number of permutations $=$ The number of ways of filling r places $=(n)^{r}$.
The number of arrangements that can be formed using n objects out of which p are identical (and of one kind) q are identical (and of another kind), r are identical (and of another kind) and the rest are distinct is $\frac{n!}{p!q!r!}$.

Condition permutations :

- Number of permutations of n dissimilar things taken r at a time when p particular things always occur $={ }^{n-p} C_{r-p} r$!.
- Number of permutations of n dissimilar things taken r at a time when p particular things never occur $={ }^{n-p} C_{r} r$!.
- The total number of permutations of n different things taken not more than r at a time, when each thing may be repeated any number of times, is

$$
\frac{\mathrm{n}\left(\mathrm{n}^{\mathrm{r}}-1\right)}{\mathrm{n}-1}
$$

- Number of permutations of n different things, taken all at a time, when m specified things always come together is $m!\times(n-m+1)!$.
- Number of permutation of n different things, taken all at a time, when m specified things never come together is $n!-m!\times(n-m+1)!$.
- Let there be n objects, of which m objects are alike of one kind, and the remaining ($n-m$) objects are alike of another kind. Then, the total number of mutually distinguishable permutations that can be formed from these objects is

$$
\frac{n!}{(\mathrm{m}!) \times(\mathrm{n}-\mathrm{m})!}
$$

The above theorem can be extended further i.e., if there are n objects, of which p_{1} are alike of one kind; p_{2} are alike of another kind; p_{3} are alike of $3^{\text {rd }}$ kind; $\ldots . ; \mathrm{p}_{\mathrm{r}}$ are alike of $\mathrm{r}^{\text {th }}$ kind such that $\mathrm{p}_{1}+\mathrm{p}_{2}+\ldots .+\mathrm{p}_{\mathrm{r}}$ $=n$; then the number of permutations of these n objects is $\frac{n!}{\left(p_{1}!\right) \times\left(p_{2}!\right) \times \ldots \times\left(p_{r}!\right)}$.

Circular permutations :

Difference between clockwise and anti-clockwise arrangement : If anti-clockwise and clockwise order of arrangement are not distinct e.g., arrangement of beads in a necklace, arrangement of flowers in garland etc. then the number of circular permutations of n distinct items is $\frac{(\mathrm{n}-1)!}{2}$.

- Number of circular permutations of n different things, taken r at a time, when clockwise and anticlockwise orders are taken as different is $\frac{{ }^{n} p_{r}}{r}$.
- Number or circular permutations of n different things, taken r at a time, when clockwise and anticlockwise orders are not different is $\frac{{ }^{n} p_{r}}{2 r}$.

Theorems on circular permutations :

- Theorem (i) : The number of circular permutations on n different objects is $(n-1)$!.
- Theorem (ii) : Then number of ways in which n persons can be seated round a table is $(\mathrm{n}-1)$!.
- Theorem (iii) : The number of ways in which n different beads can be arranged to form a necklace, is $\frac{1}{2}(\mathrm{n}-1)$!.

Combinations :

Definition : Each of the different groups or selection which can be formed by taking some or all of a number of objects, irrespective of their arrangements, called a combination.
Notation : The number of all combinations of n things, taken r at a time is denoted by $C(n, r)$ or ${ }^{n} C_{r}$ or $\binom{n}{r} \cdot{ }^{n} C_{r}$ is always a natural number.
Difference between a permutation and combination :

- In a combination only selection is made whereas in a permutation not only a selection is made but also an arrangement in a definite order is considered.
- Each combination corresponds to many permutations. For example, the six permutations $\mathrm{ABC}, \mathrm{ACB}, \mathrm{BCA}, \mathrm{CBA}$ and CAB correspond to the same combination ABC .

Number of combinations without repetition

The number of combinations (selections or groups) that can be formed from n different objects taken $r(0 \leq r \leq n)$ at a time is ${ }^{n} C_{r}=\frac{n!}{r!(n-r)!}$. Also ${ }^{n} C_{r}={ }^{n} C_{n-r}$.
Let the total number of selections (or groups) $=x$. Each group contains r objects, which can be arranged in r ! ways. Hence the number of arrangements of r objects $=x \times(r!)$. But the number of arrangements $={ }^{n} p_{r}$.
$\Rightarrow x(r!)={ }^{n} p_{r} \Rightarrow x=\frac{n!}{r!(n-r)!}={ }^{n} C_{r}$
Number of combinations with repetition and all possible selections :

- The number of combinations of n distinct objects taken r at a time when any object may be repeated any number of times.
$=$ Coefficient of x^{r} in $\left(1+x+x^{2}+\ldots \ldots .+x^{r}\right)^{n}$
$=$ Coefficient of x^{r} in $(1-x)^{-n}={ }^{n+r-1} C_{r}$
- The total number of ways in which it is possible to form groups by taking some or all of n things at a time is ${ }^{n} C_{1}+{ }^{n} C_{2}+\ldots .+{ }^{n} C_{n}=2^{n}-1$.
- The total number of ways in which it is possible to make groups by taking some or all out of $\mathrm{n}=\left(\mathrm{n}_{1}+\mathrm{n}_{2}+\ldots ..\right)$ things, when n_{1} are alike of one kind, n_{2} are alike of second kind, and so on is $\left\{\left(\mathrm{n}_{1}+1\right)\left(\mathrm{n}_{2}+1\right) \ldots ..\right\}-1$.
- The number of selections taking at least one out of $a_{1}+a_{2}+a_{3}+\ldots .+a_{n}+k$ objects, where a_{1} are alike (of one kind), a_{2} are alike (of second kind) and so on a_{n} are alike (of $\mathrm{n}^{\text {th }}$ kind) and k are distinct

$$
=\left[\left(\mathrm{a}_{1}+1\right)\left(\mathrm{a}_{2}+1\right)\left(\mathrm{a}_{3}+1\right) \ldots \ldots \ldots\left(\mathrm{a}_{\mathrm{n}}+1\right)\right] 2^{\mathrm{k}}-1
$$

Conditional combinations :

- The number of ways in which r objects can be selected from n different objects if k particular objects are
(i) Always included $={ }^{n-k} C_{r-k}$
(ii) Never included $={ }^{n-k} C_{r}$
- The number of combinations of n objects, of which p are identical, taken r at a time is
${ }^{n-p} C_{r}+{ }^{n-p} C_{r-1}+$ \qquad .$+{ }^{\mathrm{n}-\mathrm{p}} \mathrm{C}_{0}$, if $\mathrm{r} \leq \mathrm{p}$ and
${ }^{n-p} C_{r}+{ }^{n-p} C_{r-1}+\ldots \ldots \ldots . .+{ }^{n-p} C_{r-p}$, if $r>p$.

Division into groups

- The number of ways in which n different things can be arranged into r different groups is ${ }^{n+r-1} P_{n}$ or $n!{ }^{n-1} C_{r-1}$ according as blank group are or are not admissible.
- Number of ways in which $m \times n$ different objects can be distributed equally among n persons (or numbered groups) $=$ (number of ways of dividing into groups $) \times($ number of groups $)!$
$=\frac{(\mathrm{mn})!\mathrm{n}!}{(\mathrm{m}!)^{\mathrm{n}} \mathrm{n}!}=\frac{(\mathrm{mn})!}{(\mathrm{m}!)^{\mathrm{n}}}$
- If order of group is not important: The number of ways in which mn different things can be divided equally into m groups is $\frac{(\mathrm{mn})!}{(\mathrm{m}!)^{\mathrm{m}} \mathrm{m}!}$.
- If order of groups is important : The number of ways in which mn different things can be divided equally into m distinct groups is

$$
\frac{(\mathrm{mn})!}{(\mathrm{n}!)^{\mathrm{m}} \mathrm{~m}!} \times \mathrm{m}!=\frac{(\mathrm{mn})!}{(\mathrm{n}!)^{\mathrm{m}}}
$$

Derangement :

Any change in the given order of the things is called a derangement.
If n things form an arrangement in a row, the number of ways in which they can be deranged so that no one of them occupies its original place is $\mathrm{n}!\left(1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\ldots+(-1)^{\mathrm{n}} \cdot \frac{1}{\mathrm{n}!}\right)$

