SEQUENCE AND SERIES,PMI

Arithmetic Progression (AP)

AP is a progression in which the difference between any two consecutive terms is constant. This constant difference is called common difference (c.d.) and generally it is denoted by d.
Standard form: Its standard form is

$$
a+(a+d)+(a+2 d)+\ldots \ldots \ldots
$$

General term :

$$
\mathrm{T}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}
$$

If $\mathrm{T}_{\mathrm{n}}=l$ then it should be noted that
(i) $\mathrm{d}=\frac{\ell-\mathrm{a}}{\mathrm{n}-1}$
(ii) $\mathrm{n}=1+\frac{\ell-\mathrm{a}}{\mathrm{d}}$

Note: a, b, c are in $A P \Leftrightarrow 2 b=a+c$

Sum of n terms of an AP :

$$
\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}(\mathrm{a}+\ell)
$$

where l is last term (nth term). Replacing the value of l, it takes the form
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$

Arithmetic Mean :

(i) If A be the AM between two numbers a and b , then $\mathrm{A}=\frac{1}{2}(\mathrm{a}+\mathrm{b})$
(ii) The AM of n numbers $a_{1}, a_{2}, \ldots \ldots \ldots \ldots . . a_{n}$

$$
=\frac{1}{\mathrm{n}}\left(\mathrm{a}_{1}+\mathrm{a}_{2}+\ldots \ldots \ldots+\mathrm{a}_{\mathrm{n}}\right)
$$

(iii) n AM's between two numbers

If $A_{1}, A_{2}, \ldots ., A_{n}$ be n AM's between a and b then a $A_{1}, A_{2}, \ldots ., A_{n}, b$ is an AP of $(n+2)$ terms. Its common difference d is given by

$$
\mathrm{T}_{\mathrm{n}+2}=\mathrm{b}=\mathrm{a}+(\mathrm{n}+1) \mathrm{d} \Rightarrow \mathrm{~d}=\frac{\mathrm{b}-\mathrm{a}}{\mathrm{n}+1}
$$

so $\mathrm{A}_{1}=\mathrm{a}+\mathrm{d}, \mathrm{A}_{2}=\mathrm{a}+2 \mathrm{~d}, \ldots \ldots, \mathrm{~A}_{\mathrm{n}}=\mathrm{a}+\mathrm{nd}$.
Sum of n AM's between a and b
$\therefore \quad \Sigma \mathrm{A}_{\mathrm{n}}=\mathrm{n}(\mathrm{A})$
Assuming numbers in AP :
(i) When number of terms be odd

Three terms : $\quad a-d, a, a+d$

Five terms : $\mathrm{a}-2 \mathrm{~d}, \mathrm{a}-\mathrm{d}, \mathrm{a}, \mathrm{a}+\mathrm{d}, \mathrm{a}+2 \mathrm{~d}$
...............
(ii) When number of terms be even

Four terms: $a-3 d, a-d, a+d, a+3 d$
Six terms : $a-5 d, a-3 d, a-d, a+d, a+3 d$,

$$
a+5 d
$$

Geometrical Progression (GP) :

A progression is called a GP if the ratio of its each term to its previous term is always constant. This constant ratio is called its common ratio and it is generally denoted by r .
Standard form : Its standard form is

$$
a+a r+a r^{2}+
$$

\qquad
General term : $\mathrm{T}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
$\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in GP $\Leftrightarrow \frac{\mathrm{b}}{\mathrm{a}}=\frac{\mathrm{c}}{\mathrm{b}} \Leftrightarrow \mathrm{b}^{2}=\mathrm{ac}$
Sum of n terms of a GP :
The sum of n terms of a GP $a+a r+a r^{2}+\ldots \ldots$. is given by
$\mathrm{S}_{\mathrm{n}}=\left\{\begin{array}{l}\frac{\mathrm{a}\left(1-\mathrm{r}^{\mathrm{n}}\right)}{1-\mathrm{r}}=\frac{\mathrm{a}-\ell \mathrm{r}}{1-\mathrm{r}}, \text { when } \mathrm{r}<1 \\ \frac{\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right)}{\mathrm{r}-1}=\frac{\ell \mathrm{r}-\mathrm{a}}{\mathrm{r}-1}, \text { when } \mathrm{r}>1\end{array}\right.$
when $\ell=\mathrm{T}_{\mathrm{n}}$.

Sum of an infinite GP :

(i) When $\mathrm{r}>1$, then $\mathrm{r}^{\mathrm{n}} \rightarrow \infty$, so $\mathrm{S}_{\mathrm{n}} \rightarrow \infty$ Thus when $\mathrm{r}>1$, the sum S of infinite $\mathrm{GP}=\infty$
(ii) When $|\mathrm{r}|<1$, then $\mathrm{r}^{\mathrm{n}} \rightarrow 0$, so

$$
\mathrm{S}=\frac{\mathrm{a}}{1-\mathrm{r}}
$$

(iii) When $\mathrm{r}=1$, then each term is a so $\mathrm{S}=\infty$.

Geometric Mean :

(i) If G be the GM between a and b then

$$
\mathrm{G}=\sqrt{\mathrm{ab}}
$$

(ii) G.M. of n numbers $a_{1}, a_{2} \ldots \ldots, a_{n}=\left(a_{1} a_{2} a_{3}\right.$ $\left.\mathrm{a}_{\mathrm{n}}\right)^{1 / n}$
(iii) n GM's between two numbers
$\Rightarrow \mathrm{r}=(\mathrm{b} / \mathrm{a})^{1 / \mathrm{n}+1}$

Product of \mathbf{n} GM's between a and b

Product of GM's $=(\mathbf{a b})^{\mathbf{n} / 2}=G^{\mathbf{n}}$

Assuming numbers in GP :

(i) When number of terms be odd

Three terms : $\mathrm{a} / \mathrm{r}, \mathrm{a}$, ar
Five terms : $a / r^{2}, a / r, a, a r, a r^{2}$
\qquad
(ii) When number of terms be even Four terms : $a / r^{3}, a / r, a r, ~ a r^{3}$ Six terms : $a / r^{5}, a / r^{3}, a / r, a r, a r^{3}, a r^{5}$

Arithmetic-Geometric Progression :

If each term of a progression is the product of the corresponding terms of an AP and a GP, then it is called arithmetic-geometric progression (AGP). For example:
$a,(a+d) r,(a+2 d) r^{2} \ldots \ldots$.
$T_{n}=[a+(n-1) d] r^{n-1}$
$S_{n}=\frac{a}{1-r}+\frac{d r\left(1-r^{n-1}\right)}{(1-r)^{2}}-\frac{[a+(n-1) d] r^{n}}{1-r}$
$\mathrm{S}_{\infty}=\frac{\mathrm{a}}{1-\mathrm{r}}+\frac{\mathrm{dr}}{(1-\mathrm{r})^{2}} \quad|\mathrm{r}|<1$

Harmonic Progression :

A progression is called a harmonic progression (HP) if the reciprocals of its terms are in AP.
Standard form : $\frac{1}{a}+\frac{1}{a+d}+\frac{1}{a+2 d}+$. \qquad
General term : $T_{n}=\frac{1}{a+(n-1) d}$
$\therefore \mathrm{a}, \mathrm{b}, \mathrm{c}$ are in $\mathrm{HP} \Leftrightarrow \frac{2}{\mathrm{~b}}=\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{c}} \Leftrightarrow \mathrm{b}=\frac{2 \mathrm{ac}}{\mathrm{a}+\mathrm{c}}$

Harmonic Mean :

(i) If H be a HM between two numbers a and b , then

$$
\mathrm{H}=\frac{2 \mathrm{ab}}{\mathrm{a}+\mathrm{b}} \text { or } \frac{2}{\mathrm{H}}=\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}
$$

(ii) To find n HM's between a and b we first find n AM's between $1 / a$ and $1 / b$, then their reciprocals will be the required HM's.

Relations between AM, GM and HM :

$\mathrm{G}^{2}=\mathrm{AH}$
$\mathrm{A}>\mathrm{G}>\mathrm{H}$, when $\mathrm{a}, \mathrm{b}>0$.
If A and $A M$ and GM respectively between two positive numbers, then those numbers are

$$
A+\sqrt{A^{2}-G^{2}}, A-\sqrt{A^{2}-G^{2}}
$$

Some Important Results :

- If number of terms in an AP/GP/HP is odd then its mid term is the AM/GM/HM between the first and last term.
- If number of terms in an AP/GP/HP is even the $\mathrm{AM} / \mathrm{GM} / \mathrm{HM}$ of its two middle terms is equal to the AM/GM/HM between the first and last term.
- a, b, c are in AP, GP and HP $\Leftrightarrow a=b=c$
- a, b, c are in AP and HP $\Rightarrow a, b, c$ are in GP.
- a, b, c are in AP
$\Leftrightarrow \frac{1}{\mathrm{bc}}, \frac{1}{\mathrm{ca}}, \frac{1}{\mathrm{ab}}$ are in AP. $\Leftrightarrow \mathrm{bc}, \mathrm{ca}, \mathrm{ab}$ are in HP.
- a, b, c are in GP $\Leftrightarrow a^{2}, b^{2}, c^{2}$ are in GP.
- $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in GP \Leftrightarrow loga, logb, logc are in AP.
- a, b, c are in GP $\Leftrightarrow \log _{a} m \log _{b} m, \log _{c} m$ are in HP.
- $a, b, c d$ are in $G P \Leftrightarrow a+b, b+c, c+d$ are in GP.
- a, b, c are in AP $\Leftrightarrow \alpha^{a}, \alpha^{b}, \alpha^{c}$ are in GP $\left(\alpha \in R_{0}\right)$

Principle of Mathematical Induction :

It states that any statement $\mathrm{P}(\mathrm{n})$ is true for all positive integral values of n if
(i) $\mathrm{P}(1)$ is true i.e., it is true for $\mathrm{n}=1$.
(ii) $P(m)$ is true $\Rightarrow P(m+1)$ is also true
i.e., if the statement is true for $n=m$ then it must also be true for $n=m+1$.

Some Formula based on the Principle of Induction :

- $\Sigma \mathrm{n}=1+2+3+\ldots \ldots .+\mathrm{n}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
(Sum of first n natural numbers)
- $\Sigma(2 \mathrm{n}-1)=1+3+5+\ldots+(2 \mathrm{n}-1)=\mathrm{n}^{2}$
(Sum of first n odd numbers)
- $\Sigma 2 \mathrm{n}=2+4+6+$ \qquad $+2 \mathrm{n}=\mathrm{n}(\mathrm{n}+1)$
(Sum of first n even numbers)
- $\Sigma \mathrm{n}^{2}=1^{2}+2^{2}+3^{2}+\ldots \ldots . .+\mathrm{n}^{2}=\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}$
(Sum of the squares of first n natural numbers)
- $\Sigma \mathrm{n}^{3}=1^{3}+2^{3}+3^{3}+\ldots \ldots .+\mathrm{n}^{3}=\frac{\mathrm{n}^{2}(\mathrm{n}+1)^{2}}{4}$
(Sum of the cubes of first n natural numbers)

Application in Solving Objective Question :

For solving objective question related to natural numbers we find out the correct alternative by negative examination of this principle. If the given statement is $\mathrm{P}(\mathrm{n})$, then by putting $\mathrm{n}=1,2,3, \ldots$. in $\mathrm{P}(\mathrm{n})$, we decide the correct answer.
We also use the above formulae established by this principle to find the sum of n terms of a given series. For this we first express T_{n} as a polynomial in n and then for finding S_{n}, we put Σ before each term of this polynomial and then use above results of $\Sigma \mathrm{n}, \Sigma \mathrm{n}^{2}, \Sigma \mathrm{n}^{3}$ etc.

