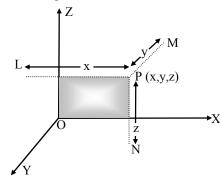
3D-GEOMETRY

Coordinates of a point:



x-coordinate = perpendicular distance of P from yz-plane

y-coordinate = perpendicular distance of P from zx-plane

z-coordinate = perpendicular distance of P from xy-plane

Coordinates of a point on the coordinate planes and axes:

 yz-plane
 : x = 0

 zx-plane
 : y = 0

 xy-plane
 : z = 0

 x-axis
 : y = 0, z = 0

 y-axis
 : y = 0, x = 0

 z-axis
 : x = 0, y = 0

Distance between two points:

If $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ are two points, then distance between them

$$PQ = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$

Coordinates of division point:

Coordinates of the point dividing the line joining two points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ in the ratio $m_1 : m_2$ are

(i) in case of internal division

$$\left(\frac{m_1x_2+m_2x_1}{m_1+m_2}, \frac{m_1y_2+m_2y_1}{m_1+m_2}, \frac{m_1z_2+m_2z_1}{m_1+m_2}\right)$$

(ii) in case of external division

$$\left(\frac{m_1x_2 - m_2x_1}{m_1 - m_2}, \frac{m_1y_2 - m_2y_1}{m_1 - m_2}, \frac{m_1z_2 - m_2z_1}{m_1 - m_2}\right)$$

Note: When m_1 , m_2 are in opposite sign, then division will be external.

Coordinates of the midpoint:

When division point is the mid-point of PQ, then ration will be 1:1; hence coordinates of the mid-point of PQ are

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)$$

Coordinates of the general point:

The coordinates of any point lying on the line joining points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ may be taken as

$$\left(\frac{kx_2 + x_1}{k+1}, \frac{ky_2 + y_1}{k+1}, \frac{kz_2 + z_1}{k+1}\right)$$

which divides PQ in the ratio k:1. This is called general point on the line PQ.

Division by coordinate planes:

The ratios in which the line segment PQ joining $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ is divided by coordinate planes are as follows:

(i) by yz-plane : $-x_1/x_2$ ratio (ii) by zx-plane : $-y_1/y_2$ ratio (iii) by xy-plane : $-z_1/z_2$ ratio

Coordinates of the centroid:

(i) If (x_1, y_1, z_1) ; (x_2, y_2, z_2) and (x_3, y_3, z_3) are vertices of a triangle then coordinates of its centroid are

$$\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}, \frac{z_1+z_2+z_3}{3}\right)$$

(ii) If (x_r, y_r, z_r) ; r = 1, 2, 3, 4 are vertices of a tetrahedron, then coordinates of its centroid are

$$\left(\frac{x_1 + x_2 + x_3 + x_4}{4}, \frac{y_1 + y_2 + y_3 + y_4}{4}, \frac{z_1 + z_2 + z_3 + z_4}{4}\right)$$

Direction cosines of a line [Dc's]:

The cosines of the angles made by a line with positive direction of coordinate axes are called the direction cosines of that line.

Let α , β , γ be the angles made by a line AB with positive direction of coordinate axes then $\cos \alpha$, $\cos \beta$, $\cos \gamma$ are the direction cosines of AB which are generally denoted by l, m, n. Hence

$$l = \cos \alpha$$
, $m = \cos \beta$, $n = \cos \gamma$

x-axis makes 0°, 90° and 90° angles with three coordinate axes, so its direction cosines are cos 0°, cos 90°, cos 90° i.e. 1, 0, 0. Similarly direction cosines of y-axis and z-axis are 0, 1, 0 and 0, 0, 1 respectively. Hence

$$dc's of x-axis = 1, 0, 0$$

$$dc's of v-axis = 0, 1, 0$$

$$dc's of z-axis = 0, 0, 1$$

Relation between dc's

$$l^2 + m^2 + n^2 = 1$$

Direction ratios of a line [DR's]:

Three numbers which are proportional to the direction cosines of a line are called the direction ratios of that line. If a, b, c are such numbers which are proportional to the direction cosines *l*, m, n of a line then a, b, c are direction ratios of the line. Hence

$$\Rightarrow l = \pm \frac{a}{\sqrt{a^2 + b^2 + c^2}},$$

$$m = \pm \frac{b}{\sqrt{a^2 + b^2 + c^2}}, n = \pm \frac{c}{\sqrt{a^2 + b^2 + c^2}}$$

Direction cosines of a line joining two points:

Let
$$\equiv (x_1, y_1, z_1)$$
 and $Q \equiv (x_2, y_2, z_2)$; then

(i) dr's of PQ:
$$(x_2 - x_1)$$
, $(y_2 - y_1)$, $(z_2 - z_1)$

(ii)dc's of PQ:
$$\frac{x_2 - x_1}{PO}$$
, $\frac{y_2 - y_1}{PO}$, $\frac{z_2 - z_1}{PO}$

i.e.,
$$\frac{x_2 - x_1}{\sqrt{\Sigma(x_2 - x_1)^2}}$$
, $\frac{y_2 - y_1}{\sqrt{\Sigma(x_2 - x_1)^2}}$, $\frac{z_2 - z_1}{\sqrt{\Sigma(x_2 - x_1)^2}}$

Angle between two lines

Case I. When dc's of the lines are given

If l_1 , m_1 , and l_2 , m_2 n_2 are dc's of given two lines, then the angle θ between them is given by

- $\cos \theta = l_1 l_2 + m_1 m_2 + n_1 n_2$
- $\sin \theta = \sqrt{(\ell_1 m_2 \ell_2 m_1)^2 + (m_1 n_2 m_2 n_1)^2 + (n_1 \ell_2 n_2 \ell_1)^2}$

The value of $\sin \theta$ can easily be obtained by the following form :

$$\sin \theta = \sqrt{\begin{vmatrix} \ell_1 & m_1 \\ \ell_2 & m_2 \end{vmatrix}^2 + \begin{vmatrix} m_1 & n_1 \\ m_2 & n_2 \end{vmatrix}^2 + \begin{vmatrix} n_1 & \ell_1 \\ n_2 & \ell_2 \end{vmatrix}^2}$$

Case II. When dr's of the lines are given

If a_1 , b_1 , c_1 and a_2 , b_2 , c_2 are dr's of given two lines, then the angle θ between them is given by

$$\cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$$

$$\sin \theta = \frac{\sqrt{\sum (a_1b_2 - a_2b_1)^2}}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$$

Conditions of parallelism and perpendicularity of two lines:

Case I. When dc's of two lines AB and CD, say ℓ_1 , m_1, n_1 and ℓ_2 , m_2 , n_2 are known

$$AB \parallel CD \Leftrightarrow \ell_1 = \ell_2, m_1 = m_2, n_1 = n_2$$

$$AB \perp CD \Leftrightarrow \ell_1 \ell_2 + m_1m_2 + n_1n_2 = 0$$

Case II. When dr's of two lines AB and CD, say: a_1 , b_1 , c_1 and a_2 , b_2 , c_2 are known

AB
$$\parallel$$
 CD $\Leftrightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

$$AB \perp CD \iff a_1 a_2 + b_1 b_2 + c_1 c_2 = 0.$$

Area of a triangle:

Let $A(x_1, y_1, z_1)$; $B(x_2, y_2, z_2)$ and $C(x_3, y_3, z_3)$ are vertices of a triangle. Then

dr's of AB =
$$x_2 - x_1$$
, $y_2 - y_1$, $z_2 - z_1$
= a_1 , b_1 , c_1 (say)
and AB = $\sqrt{a_1^2 + b_1^2 + c_1^2}$
dr's of BC = $x_3 - x_2$, $y_3 - y_2$, $z_3 - z_2$

dr's of BC =
$$x_3 - x_2$$
, $y_3 - y_2$, $z_3 - z_2$
= a_2 , b_2 , c_2 (say)

and BC =
$$\sqrt{a_2^2 + b_2^2 + c_2^2}$$

Now
$$\sin B = \frac{\sqrt{\sum (b_1 c_2 - b_2 c_1)^2}}{\sqrt{\sum a_1^2} \sqrt{\sum a_2^2}}$$
$$= \frac{\sqrt{\sum (b_1 c_2 - b_2 c_1)^2}}{\sqrt{\sum a_1^2 + b_2^2 c_1^2}}$$

∴ Area of
$$\triangle ABC = \frac{1}{2} AB BC \sin B$$

= $\frac{1}{2} \sqrt{\sum (b_1c_2 - b_2c_1)^2}$

Projection of a line segment joining two points on a line:

Let PQ be a line segment where $P = (x_1, y_1, z_1)$ and $Q = (x_2, y_2, z_2)$; and AB be a given line with dc's as l, m, n. If P'Q' be the projection of PQ on AB, then

$$P'O' = PO \cos \theta$$

where θ is the angle between PQ and AB. On replacing the value of $\cos \theta$ in this, we shall get the following value of P'Q'.

$$P'Q' = l(x_2 - x_1) + m(y_2 - y_1) + n(z_2 - z_1)$$

Projection of PQ on x-axis : $a = |x_2 - x_1|$

Projection of PQ on y-axis : $b = |y_2 - y_1|$

Projection of PQ on z-axis : $c = |z_2 - z_1|$

Length of line segment PQ = $\sqrt{a^2 + b^2 + c^2}$

* If the given lines are $\frac{x-\alpha}{\ell} = \frac{y-\beta}{m} = \frac{z-\gamma}{n}$ and

$$\frac{x-\alpha'}{\ell'} = \frac{y-\beta'}{m'} = \frac{z-\gamma'}{n'}$$
, then condition for

intersection is

• If the given lines are $\frac{x-\alpha}{\ell} = \frac{y-\beta}{m} = \frac{z-\gamma}{n}$ and

$$\frac{x-\alpha'}{\ell'} = -\frac{y-\beta'}{m'} = -\frac{z-\gamma'}{n'}, \quad \text{then} \quad \text{condition} \quad \text{for}$$

intersections is

$$\begin{vmatrix} \alpha - \alpha' & \beta - \beta' & \gamma - \gamma' \\ \ell & m & n \\ \ell & m' & n' \end{vmatrix} = 0$$

Plane containing the above two lines is

$$\begin{vmatrix} x - \alpha & y - \beta & z - \gamma \\ \ell & m & n \\ \ell' & m' & n' \end{vmatrix} = 0$$

Condition of coplanarity if both the lines are in general form:

Let the lines be

$$ax + by + cz + d = 0 = a'x + b'y + c'z + d'$$

and
$$\alpha x + \beta y + \gamma z + \delta = 0 = \alpha'x + \beta'y + \gamma'z + \delta'$$

These are coplanar if
$$\begin{vmatrix} a & b & c & d \\ a' & b' & c' & d' \\ \alpha & \beta & \gamma & \delta \\ \alpha' & \beta' & \gamma' & \delta' \end{vmatrix} = 0$$

Reduction of non-symmetrical form to symmetrical form:

Let equation of the line in non-symmetrical form be' $a_1x + b_1y + c_1z + d_1 = 0$; $a_2x + b_2y + c_2z + d_2 = 0$. To find the equation of the line in symmetrical form, we must know (i) its direction ratios (ii) coordinates of any point on it.

• **Direction ratios :** Let ℓ , m, n be the direction ratios of the line. Since the line lies in both the planes, it must be perpendicular to normals of both planes. So

$$a_1\ell + b_1m + c_1n = 0$$
; $a_2\ell + b_2m + c_2n = 0$

From these equations, proportional values of ℓ , m, n can be found by cross-multiplication as

$$\frac{\ell}{b_1c_2-b_2c_1}=\frac{m}{c_1a_2-c_2a_1}=\frac{n}{a_1b_2-a_2b_1}$$

Point on the line: Note that as ℓ, m, n cannot be zero simultaneously, so at least one must be non-zero. Let a₁b₂ - a₂b₁ ≠ 0, then the line cannot be parallel to xy-plane, so it intersect it. Let it intersect xy-plane in (x₁,y₁, 0). Then

$$a_1x_1 + b_1y_1 + d_1 = 0$$
 and $a_2x_1 + b_2y_1 + d_2 = 0$

Solving these, we get a point on the line. Then its equation becomes

$$\frac{x - x_1}{b_1 c_2 - b_2 c_1} = \frac{y - y_1}{c_1 a_2 - c_2 a_1} = \frac{z - 0}{a_1 b_2 - a_2 b_1}$$

or
$$\frac{x - \frac{b_1 d_2 - b_2 d_1}{a_1 b_2 - a_2 b_1}}{b_1 c_2 - b_2 c_1} = \frac{y - \frac{d_1 a_2 - d_2 a_1}{a_1 b_2 - a_2 b_1}}{c_1 a_2 - c_2 a_1} = \frac{z - 0}{a_1 b_2 - a_2 b_1}$$

Note : If $\ell \neq 0$, take a point on yz –plane as $(0, t_1, z_1)$ and if $m \neq 0$, take a point on xz-plane as $(x_1, 0, z_1)$

• **Skew lines:** The straight lines which are not parallel and non-coplanar i.e. non-intersecting are called skew lines.

If
$$\Delta = \begin{vmatrix} x - \alpha & y - \beta & z - \gamma \\ \ell & m & n \\ \ell' & m' & n' \end{vmatrix} \neq 0$$
, the lines are skew.

Shortest distance: Suppose the equation of the lines

are
$$\frac{x-\alpha}{\ell} = \frac{y-\beta}{m} = \frac{z-\gamma}{n}$$

and
$$\frac{x-\alpha'}{\ell'} = \frac{y-\beta'}{m'} = \frac{z-\gamma'}{n'}$$
. Then

S.D. =
$$\frac{(\alpha - \alpha')(mn' - m'n) + (\beta - \beta')(n\ell' - n'\ell)(\ell m' - \ell'm)}{\sqrt{\Sigma(mn' - m'n)^2}}$$

$$= \begin{vmatrix} \alpha - \alpha' & \beta - \beta' & \gamma - \gamma' \\ \ell & m & n \\ \ell' & m' & n' \end{vmatrix}$$

Some results for plane and straight line:

(i) General equation of a plane:

$$ax + by + cz + d = 0$$

where a, b, c are dr's of a normal to this plane.

(ii) Equation of a straight line:

General form:
$$\begin{cases} a_1x + b_1y + c_1z + d_1 = 0 \\ a_2x + b_2y + c_2z + d_2 = 0 \end{cases}$$

(In fact it is the straight line which is the intersection of two given planes)

Symmetric form:
$$\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$$

where (x_1, y_1, z_1) is a point on this line and a, b, c are its dr's

(iii) Angle between two planes:

If θ be the angle between planes $a_1x + b_1y$ $c_1z + d_1 = 0$ and $a_2x + b_2y + c_2z + d_2 = 0$, then

$$\cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2 \sqrt{a_2^2 + b_2^2 + c_2^2}}}$$

(In fact angle between two planes is the angle between their normals.)

Further above two planes are

parallel
$$\Leftrightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

perpendicular $\Leftrightarrow a_1a_2 + b_1b_2 + c_1c_2 = 0$