3D-GEOMETRY

Coordinates of a point :

x -coordinate $=$ perpendicular distance of P from yz-plane
y -coordinate $=$ perpendicular distance of P from zx-plane
z -coordinate $=$ perpendicular distance of P from xy-plane
Coordinates of a point on the coordinate planes and axes:

yz-plane	$:$	$x=0$
zx-plane	$:$	$y=0$
xy-plane	$:$	$z=0$
x-axis	$:$	$y=0, z=0$
y-axis	$:$	$y=0, x=0$
z-axis	$:$	$x=0, y=0$

Distance between two points :
If $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ are two points, then distance between them

$$
\mathrm{PQ}=\sqrt{\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{2}+\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)^{2}+\left(\mathrm{z}_{1}-\mathrm{z}_{2}\right)^{2}}
$$

Coordinates of division point :

Coordinates of the point dividing the line joining two points $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ in the ratio $\mathrm{m}_{1}: \mathrm{m}_{2}$ are
(i) in case of internal division
$\left(\frac{\mathrm{m}_{1} \mathrm{x}_{2}+\mathrm{m}_{2} \mathrm{x}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}, \frac{\mathrm{~m}_{1} \mathrm{y}_{2}+\mathrm{m}_{2} \mathrm{y}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}, \frac{\mathrm{~m}_{1} \mathrm{z}_{2}+\mathrm{m}_{2} \mathrm{z}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\right)$
(ii) in case of external division

$$
\left(\frac{\mathrm{m}_{1} \mathrm{x}_{2}-\mathrm{m}_{2} \mathrm{x}_{1}}{\mathrm{~m}_{1}-\mathrm{m}_{2}}, \frac{\mathrm{~m}_{1} \mathrm{y}_{2}-\mathrm{m}_{2} \mathrm{y}_{1}}{\mathrm{~m}_{1}-\mathrm{m}_{2}}, \frac{\mathrm{~m}_{1} \mathrm{z}_{2}-\mathrm{m}_{2} \mathrm{z}_{1}}{\mathrm{~m}_{1}-\mathrm{m}_{2}}\right)
$$

Note: When $\mathrm{m}_{1}, \mathrm{~m}_{2}$ are in opposite sign, then division will be external.

Coordinates of the midpoint:

When division point is the mid-point of PQ , then ration will be $1: 1$; hence coordinates of the midpoint of PQ are

$$
\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{2}, \frac{\mathrm{z}_{1}+\mathrm{z}_{2}}{2}\right)
$$

Coordinates of the general point :

The coordinates of any point lying on the line joining points $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ may be taken as

$$
\left(\frac{\mathrm{kx}_{2}+\mathrm{x}_{1}}{\mathrm{k}+1}, \frac{\mathrm{ky}_{2}+\mathrm{y}_{1}}{\mathrm{k}+1}, \frac{\mathrm{kz}_{2}+\mathrm{z}_{1}}{\mathrm{k}+1}\right)
$$

which divides PQ in the ratio $\mathrm{k}: 1$. This is called general point on the line PQ .

Division by coordinate planes :

The ratios in which the line segment PQ joining $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ is divided by coordinate planes are as follows :
(i) by yz-plane
$: \quad-\mathrm{x}_{1} / \mathrm{x}_{2}$ ratio
(ii) by zx-plane $\quad: \quad-y_{1} / y_{2}$ ratio
(iii) by xy-plane : $\quad-\mathrm{z}_{1} / \mathrm{z}_{2}$ ratio

Coordinates of the centroid :

(i) If $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$; $\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ and $\left(\mathrm{x}_{3}, \mathrm{y}_{3}, \mathrm{z}_{3}\right)$ are vertices of a triangle then coordinates of its centroid are

$$
\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}}{3}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3}}{3}, \frac{\mathrm{z}_{1}+\mathrm{z}_{2}+\mathrm{z}_{3}}{3}\right)
$$

(ii) If $\left(\mathrm{x}_{\mathrm{r}}, \mathrm{y}_{\mathrm{r}}, \mathrm{z}_{\mathrm{r}}\right) ; \mathrm{r}=1,2,3,4$ are vertices of a tetrahedron, then coordinates of its centroid are
$\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}}{4}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3}+\mathrm{y}_{4}}{4}, \frac{\mathrm{z}_{1}+\mathrm{z}_{2}+\mathrm{z}_{3}+\mathrm{z}_{4}}{4}\right)$

Direction cosines of a line [Dc's] :

The cosines of the angles made by a line with positive direction of coordinate axes are called the direction cosines of that line.

Let α, β, γ be the angles made by a line AB with positive direction of coordinate axes then $\cos \alpha, \cos$ $\beta, \cos \gamma$ are the direction cosines of AB which are generally denoted by l, m, n. Hence

$$
l=\cos \alpha, m=\cos \beta, n=\cos \gamma
$$

x-axis makes $0^{\circ}, 90^{\circ}$ and 90° angles with three coordinate axes, so its direction cosines are $\cos 0^{\circ}$, $\cos 90^{\circ}, \cos 90^{\circ}$ i.e. $1,0,0$. Similarly direction cosines of y-axis and z-axis are $0,1,0$ and $0,0,1$ respectively. Hence
dc's of x -axis $=1,0,0$
dc's of y-axis $=0,1,0$
dc's of z-axis $=0,0,1$
Relation between dc's

$$
\therefore l^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=1
$$

Direction ratios of a line [DR's] :

Three numbers which are proportional to the direction cosines of a line are called the direction ratios of that line. If a, b, c are such numbers which are proportional to the direction cosines $l, \mathrm{~m}, \mathrm{n}$ of a line then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are direction ratios of the line. Hence

$$
\begin{aligned}
\Rightarrow l & = \pm \frac{\mathrm{a}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}}, \\
\mathrm{~m} & = \pm \frac{\mathrm{b}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}}, \mathrm{n}= \pm \frac{\mathrm{c}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}}
\end{aligned}
$$

Direction cosines of a line joining two points :
Let $\equiv\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{Q} \equiv\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$; then
(i) dr's of PQ: $\left(x_{2}-x_{1}\right),\left(y_{2}-y_{1}\right),\left(z_{2}-z_{1}\right)$
(ii)dc's of PQ : $\frac{x_{2}-x_{1}}{P Q}, \frac{y_{2}-y_{1}}{P Q}, \frac{z_{2}-z_{1}}{P Q}$
i.e., $\frac{\mathrm{x}_{2}-\mathrm{x}_{1}}{\sqrt{\Sigma\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}}}, \frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\sqrt{\Sigma\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}}}, \frac{\mathrm{z}_{2}-\mathrm{z}_{1}}{\sqrt{\Sigma\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}}}$

Angle between two lines :

Case I. When dc's of the lines are given
If $l_{1}, \mathrm{~m}_{1}$, and $l_{2}, \mathrm{~m}_{2} \mathrm{n}_{2}$ are dc's of given two lines, then the angle θ between them is given by

- $\quad \cos \theta=l_{1} l_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}$
- $\sin \theta=\sqrt{\left(\ell_{1} m_{2}-\ell_{2} m_{1}\right)^{2}+\left(m_{1} n_{2}-m_{2} n_{1}\right)^{2}+\left(n_{1} \ell_{2}-n_{2} \ell_{1}\right)^{2}}$

The value of $\sin \theta$ can easily be obtained by the following form :
$\sin \theta=\sqrt{\left|\begin{array}{ll}\ell_{1} & m_{1} \\ \ell_{2} & m_{2}\end{array}\right|^{2}+\left|\begin{array}{ll}m_{1} & n_{1} \\ m_{2} & n_{2}\end{array}\right|^{2}+\left|\begin{array}{ll}n_{1} & \ell_{1} \\ n_{2} & \ell_{2}\end{array}\right|^{2}}$
Case II. When dr's of the lines are given
If a_{1}, b_{1}, c_{1} and a_{2}, b_{2}, c_{2} are dr's of given two lines, then the angle θ between them is given by

$$
\begin{aligned}
& \cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}} \\
& \sin \theta=\frac{\sqrt{\Sigma\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}}}{\sqrt{\mathrm{a}_{1}^{2}+\mathrm{b}_{1}^{2}+\mathrm{c}_{1}^{2}} \sqrt{\mathrm{a}_{2}^{2}+\mathrm{b}_{2}^{2}+\mathrm{c}_{2}^{2}}}
\end{aligned}
$$

Conditions of parallelism and perpendicularity of two lines :

Case I. When dc's of two lines AB and CD , say ℓ_{1}, $\mathrm{m}_{1}, \mathrm{n}_{1}$ and $\ell_{2}, \mathrm{~m}_{2}, \mathrm{n}_{2}$ are known
$\mathrm{AB} \| \mathrm{CD} \Leftrightarrow \ell_{1}=\ell_{2}, \mathrm{~m}_{1}=\mathrm{m}_{2}, \mathrm{n}_{1}=\mathrm{n}_{2}$
$\mathrm{AB} \perp \mathrm{CD} \Leftrightarrow \ell_{1} \ell_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}=0$.
Case II. When dr's of two lines AB and CD, say: a_{1}, $\mathrm{b}_{1}, \mathrm{c}_{1}$ and $\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{2}$ are known

$$
\begin{aligned}
& A B \| C D \Leftrightarrow \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \\
& A B \perp C D \Leftrightarrow a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0 .
\end{aligned}
$$

Area of a triangle :

Let $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right) ; \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ and $\mathrm{C}\left(\mathrm{x}_{3}, \mathrm{y}_{3}, \mathrm{z}_{3}\right)$ are vertices of a triangle. Then

$$
\begin{aligned}
& \text { dr's of } \mathrm{AB}=\mathrm{x}_{2}-\mathrm{x}_{1}, \mathrm{y}_{2}-\mathrm{y}_{1}, \mathrm{z}_{2}-\mathrm{z}_{1} \\
&=\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1} \text { (say) } \\
& \text { and } \begin{aligned}
\mathrm{AB} & =\sqrt{\mathrm{a}_{1}^{2}+\mathrm{b}_{1}^{2}+\mathrm{c}_{1}^{2}} \\
\mathrm{dr's} \text { of } \mathrm{BC} & =\mathrm{x}_{3}-\mathrm{x}_{2}, \mathrm{y}_{3}-\mathrm{y}_{2}, \mathrm{z}_{3}-\mathrm{z}_{2} \\
& =\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{2}(\text { say })
\end{aligned}
\end{aligned}
$$

and

$$
\mathrm{BC}=\sqrt{\mathrm{a}_{2}^{2}+\mathrm{b}_{2}^{2}+\mathrm{c}_{2}^{2}}
$$

$$
\text { Now } \quad \sin \mathrm{B}=\frac{\sqrt{\Sigma\left(\mathrm{b}_{1} \mathrm{c}_{2}-\mathrm{b}_{2} \mathrm{c}_{1}\right)^{2}}}{\sqrt{\Sigma \mathrm{a}_{1}^{2}} \sqrt{\Sigma \mathrm{a}_{2}^{2}}}
$$

$$
=\frac{\sqrt{\Sigma\left(\mathrm{b}_{1} \mathrm{c}_{2}-\mathrm{b}_{2} \mathrm{c}_{1}\right)^{2}}}{\mathrm{AB} \cdot \mathrm{BC}}
$$

$$
\therefore \text { Area of } \triangle \mathrm{ABC}=\frac{1}{2} \mathrm{AB} \cdot \mathrm{BC} \sin \mathrm{~B}
$$

$$
=\frac{1}{2} \sqrt{\Sigma\left(\mathrm{~b}_{1} \mathrm{c}_{2}-\mathrm{b}_{2} \mathrm{c}_{1}\right)^{2}}
$$

Projection of a line segment joining two points on a line :

Let $P Q$ be a line segment where $P \equiv\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathrm{Q} \equiv\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$; and AB be a given line with dc's as l, m , n. If $P^{\prime} Q^{\prime}$ be the projection of $P Q$ on $A B$, then

$$
P^{\prime} Q^{\prime}=P Q \cos \theta
$$

where θ is the angle between PQ and AB . On replacing the value of $\cos \theta$ in this, we shall get the following value of $\mathrm{P}^{\prime} \mathrm{Q}$ '.

$$
\mathrm{P}^{\prime} \mathrm{Q}^{\prime}=l\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)+\mathrm{m}\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)+\mathrm{n}\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)
$$

Projection of PQ on x-axis: $a=\left|x_{2}-x_{1}\right|$
Projection of PQ on y-axis : $b=\left|y_{2}-y_{1}\right|$
Projection of PQ on z -axis : $\mathrm{c}=\left|\mathrm{z}_{2}-\mathrm{z}_{1}\right|$
Length of line segment $P Q=\sqrt{a^{2}+b^{2}+c^{2}}$

* If the given lines are $\frac{x-\alpha}{\ell}=\frac{y-\beta}{m}=\frac{z-\gamma}{n}$ and $\frac{x-\alpha^{\prime}}{\ell^{\prime}}=\frac{y-\beta^{\prime}}{m^{\prime}}=\frac{z-\gamma^{\prime}}{n^{\prime}}$, then condition for intersection is
- If the given lines are $\frac{x-\alpha}{\ell}=\frac{y-\beta}{m}=\frac{z-\gamma}{n}$ and $\frac{x-\alpha^{\prime}}{\ell^{\prime}}=\frac{y-\beta^{\prime}}{m^{\prime}}=\frac{z-\gamma^{\prime}}{n^{\prime}}$, then condition for intersections is

$$
\left|\begin{array}{ccc}
\alpha-\alpha^{\prime} & \beta-\beta^{\prime} & \gamma-\gamma^{\prime} \\
\ell & \mathrm{m} & \mathrm{n} \\
\ell & \mathrm{~m}^{\prime} & \mathrm{n}^{\prime}
\end{array}\right|=0
$$

Plane containing the above two lines is

$$
\left|\begin{array}{ccc}
\mathrm{x}-\alpha & \mathrm{y}-\beta & \mathrm{z}-\gamma \\
\ell & \mathrm{m} & \mathrm{n} \\
\ell^{\prime} & \mathrm{m}^{\prime} & \mathrm{n}^{\prime}
\end{array}\right|=0
$$

Condition of coplanarity if both the lines are in general

 form:Let the lines be
$a x+b y+c z+d=0=a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime}$
and $\alpha x+\beta y+\gamma z+\delta=0=\alpha^{\prime} x+\beta^{\prime} y+\gamma^{\prime} z+\delta^{\prime}$
These are coplanar if $\left|\begin{array}{cccc}a & b & c & d \\ a^{\prime} & b^{\prime} & c^{\prime} & d^{\prime} \\ \alpha & \beta & \gamma & \delta \\ \alpha^{\prime} & \beta^{\prime} & \gamma^{\prime} & \delta^{\prime}\end{array}\right|=0$

Reduction of non-symmetrical form to symmetrical form:

Let equation of the line in non-symmetrical form be' $\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1} \mathrm{z}+\mathrm{d}_{1}=0 ; \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2} \mathrm{z}+\mathrm{d}_{2}=0$.
To find the equation of the line in symmetrical form, we must know (i) its direction ratios (ii) coordinates of any point on it.

- Direction ratios : Let $\ell, \mathrm{m}, \mathrm{n}$ be the direction ratios of the line. Since the line lies in both the planes, it must be perpendicular to normals of both planes. So
$\mathrm{a}_{1} \ell+\mathrm{b}_{1} \mathrm{~m}+\mathrm{c}_{1} \mathrm{n}=0 ; \mathrm{a}_{2} \ell+\mathrm{b}_{2} \mathrm{~m}+\mathrm{c}_{2} \mathrm{n}=0$
From these equations, proportional values of $\ell, \mathrm{m}, \mathrm{n}$ can be found by cross-multiplication as

$$
\frac{\ell}{\mathrm{b}_{1} \mathrm{c}_{2}-\mathrm{b}_{2} \mathrm{c}_{1}}=\frac{\mathrm{m}}{\mathrm{c}_{1} \mathrm{a}_{2}-\mathrm{c}_{2} \mathrm{a}_{1}}=\frac{\mathrm{n}}{\mathrm{a}_{1} \mathrm{~b}_{2}-\mathrm{a}_{2} \mathrm{~b}_{1}}
$$

- Point on the line : Note that as ℓ, m, n cannot be zero simultaneously, so at least one must be nonzero. Let $a_{1} b_{2}-a_{2} b_{1} \neq 0$, then the line cannot be parallel to xy-plane, so it intersect it. Let it intersect xy-plane in ($\left.\mathrm{x}_{1}, \mathrm{y}_{1}, 0\right)$. Then $\mathrm{a}_{1} \mathrm{x}_{1}+\mathrm{b}_{1} \mathrm{y}_{1}+\mathrm{d}_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}_{1}+\mathrm{b}_{2} \mathrm{y}_{1}+\mathrm{d}_{2}=0$
Solving these, we get a point on the line. Then its equation becomes

$$
\begin{aligned}
\frac{x-x_{1}}{b_{1} c_{2}-b_{2} c_{1}} & =\frac{y-y_{1}}{c_{1} a_{2}-c_{2} a_{1}}=\frac{z-0}{a_{1} b_{2}-a_{2} b_{1}} \\
\text { or } \frac{x-\frac{b_{1} d_{2}-b_{2} d_{1}}{a_{1} b_{2}-a_{2} b_{1}}}{b_{1} c_{2}-b_{2} c_{1}} & =\frac{y-\frac{d_{1} a_{2}-d_{2} a_{1}}{a_{1} b_{2}-a_{2} b_{1}}}{c_{1} a_{2}-c_{2} a_{1}}=\frac{z-0}{a_{1} b_{2}-a_{2} b_{1}}
\end{aligned}
$$

Note : If $\ell \neq 0$, take a point on yz -plane as $\left(0, \mathrm{t}_{1}, \mathrm{z}_{1}\right)$ and if $\mathrm{m} \neq 0$, take a point on xz-plane as $\left(\mathrm{x}_{1}, 0, \mathrm{z}_{1}\right)$

- Skew lines : The straight lines which are not parallel and non-coplanar i.e. non-intersecting are called skew lines.
If $\Delta=\left|\begin{array}{ccc}\mathrm{x}-\alpha & \mathrm{y}-\beta & \mathrm{z}-\gamma \\ \ell & \mathrm{m} & \mathrm{n} \\ \ell^{\prime} & \mathrm{m}^{\prime} & \mathrm{n}^{\prime}\end{array}\right| \neq 0$, the lines are skew.
Shortest distance : Suppose the equation of the lines are $\frac{\mathrm{x}-\alpha}{\ell}=\frac{\mathrm{y}-\beta}{\mathrm{m}}=\frac{\mathrm{z}-\gamma}{\mathrm{n}}$ and $\frac{\mathrm{x}-\alpha^{\prime}}{\ell^{\prime}}=\frac{\mathrm{y}-\beta^{\prime}}{\mathrm{m}^{\prime}}=\frac{\mathrm{z}-\gamma^{\prime}}{\mathrm{n}^{\prime}}$. Then
S.D. $=\frac{\left(\alpha-\alpha^{\prime}\right)\left(\mathrm{mn}^{\prime}-\mathrm{m}^{\prime} \mathrm{n}\right)+\left(\beta-\beta^{\prime}\right)\left(\mathrm{n} \ell^{\prime}-\mathrm{n}^{\prime} \ell\right)\left(\ell \mathrm{m}^{\prime}-\ell^{\prime} \mathrm{m}\right)}{\sqrt{\Sigma\left(\mathrm{mn}^{\prime}-\mathrm{m}^{\prime} \mathrm{n}\right)^{2}}}$
$=\left|\begin{array}{ccc}\alpha-\alpha^{\prime} & \beta-\beta^{\prime} & \gamma-\gamma^{\prime} \\ \ell & \mathrm{m} & \mathrm{n} \\ \ell^{\prime} & \mathrm{m}^{\prime} & \mathrm{n}^{\prime}\end{array}\right|$

Some results for plane and straight line:

(i) General equation of a plane :

$$
a x+b y+c z+d=0
$$

where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are dr's of a normal to this plane.
(ii) Equation of a straight line :

$$
\text { General form : } \left.\begin{array}{c}
a_{1} x+b_{1} y+c_{1} z+d_{1}=0 \\
a_{2} x+b_{2} y+c_{2} z+d_{2}=0
\end{array}\right\}
$$

(In fact it is the straight line which is the intersection of two given planes)

Symmetric form : $\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{a}}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{~b}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{c}}$
where $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ is a point on this line and $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are its dr's
(iii) Angle between two planes :

If θ be the angle between planes $a_{1} x+b_{1} y c_{1} z+d_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2} \mathrm{z}+\mathrm{d}_{2}=0$, then
$\cos \theta=\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right|$
(In fact angle between two planes is the angle between their normals.)
Further above two planes are

$$
\text { parallel } \Leftrightarrow \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}
$$

perpendicular $\Leftrightarrow a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$

