QUARDRATIC EQUATIONS

General quadratic equation :

An equation of the form

$$
\begin{equation*}
a x^{2}+b x+c=0 \tag{1}
\end{equation*}
$$

where $\mathrm{a} \neq 0$, is called a quadratic equation, in the real or complex coefficients a, b and c.

Roots of a quadratic equation :

The values of x , (say $\mathrm{x}=\alpha, \beta$) which satisfy the quadratic equation (1) are called the roots of the equation and they are given by
$\alpha=\frac{-\mathrm{b}+\sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}} ; \beta=\frac{-\mathrm{b}-\sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$

Discriminant of a quadratic equation :

The quantity $\mathrm{D} \equiv \mathrm{b}^{2}-4 \mathrm{ac}$, is known as the discriminant of the equation.

Nature of the Roots :

In the equations $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$, let us suppose that a, b, c are real and $a \neq 0$. The following is true about the nature of its roots-
(i) The equation has real and distinct roots if and only if $\mathrm{D} \equiv \mathrm{b}^{2}-4 \mathrm{ac}>0$.
(ii) The equation has real and coincident (equal) roots if and only if $\mathrm{D} \equiv \mathrm{b}^{2}-4 \mathrm{ac}=0$.
(iii) The equation has complex roots of the form $\alpha \pm i \beta, \alpha \neq 0, \beta \neq 0 \in R$, if and only if $\mathrm{D} \equiv \mathrm{b}^{2}-4 \mathrm{ac}<0$.
(iv) The equation has rational roots if and only if a, b, $c \in Q$ (the set of rational numbers) and $D \equiv b^{2}-$ 4 ac is a perfect square (of a rational number).
(v) The equation has (unequal) irrational (surd form) roots if and only if $\mathrm{D} \equiv \mathrm{b}^{2}-4 \mathrm{ac}>0$ and not a perfect square even if a, b and c are rational. In this case if $p+\sqrt{q}, p$, q rational, is an irrational root, then $P-\sqrt{q}$ is also a root (a, b, c being rational).
(vi) $\alpha+\mathrm{i} \beta(\beta \neq 0$ and $\alpha, \beta \in \mathrm{R})$ is a root if and only if its conjugate $\alpha-i \beta$ is a root, that is complex roots occur in pairs in a quadratic equation. In case the equations is satisfied by more than two complex numbers, then it reduces to an identitiy. $0 \cdot x^{2}+0 . x+0=0$, i.e. $a=0=b=c$.

Relation between Roots and Coefficients :

If α, β are the roots of the quadratic equation $a x^{2}+b x+c=0$, then the sum and product of the roots is
$\alpha+\beta=-\frac{\mathrm{b}}{\mathrm{a}}$ and $\alpha \beta=\frac{\mathrm{c}}{\mathrm{a}}$
Hence the quadratic equation whose roots are α and β is given by

$$
x^{2}-(\alpha+\beta) x+\alpha \beta=0 \text { or }(x-\alpha)(x-\beta)=0
$$

Condition that the two quadratic equations have a common root :

Let α be a common root of two quadratic equations
$a_{1} x^{2}+b_{1} x+c_{1}=0$ and $a_{2} x^{2}+b_{2} x+c_{2}=0$
where $a_{1} \neq 0, a_{2} \neq 0$ and $a_{1} b_{2}-a_{2} b_{1} \neq 0$.
Then $a_{1} \alpha^{2}+b_{1} \alpha+c_{1}=0$ and $a_{2} \alpha^{2}+b_{2} \alpha+c_{2}=0$
which gives (by cross multipication),

$$
\frac{\alpha^{2}}{b_{1} c_{2}-b_{2} c_{1}}=\frac{\alpha}{c_{1} a_{2}-c_{2} a_{1}}=\frac{1}{a_{1} b_{2}-a_{2} b_{1}}
$$

Thus eliminating α, the condition for a common root is given by

$$
\begin{equation*}
\left(c_{1} a_{2}-c_{2} a_{1}\right)^{2}=\left(b_{1} c_{2}-b_{2} c_{1}\right)\left(a_{1} b_{2}-a_{2} b_{1}\right) \tag{2}
\end{equation*}
$$

Condition that the two quadratic equations have both the roots common :

The two quadratic equation will have the same roots if and only if their coefficients are proportional, i.e.

$$
\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}
$$

Descarte's rule of signs :

The maximum number of positive of a polynomial $f(x)$ is the number of changes of signs in $f(x)$ and the maximum number of negative roots of $f(x)$ is the number of changes of signs in $f(-x)$.

Position of roots :

If $f(x)=0$ is an equation and a, b are two real numbers such that $f(a) f(b)<0$, then the equation $f(x)$ $=0$ has at least one real root or an odd number of real roots between a and b. In case $f(a)$ and $f(b)$ are of the same sign, then either no real root or an even number of real roots of $f(x)=0$ lie between a and b.

MANISH KALIA'S MATHEMATICS CLASSES

The quadratic expression :

(A) Let $f(x) \equiv a x^{2}+b x+c, a, b, c \in R, a>d$ be a quadratic expression. Since,
$f(x)=a\left\{\left(x+\frac{b}{2 a}\right)^{2}-\left(\frac{b^{2}-4 a c}{4 a^{2}}\right)\right\}$
The following is true from equation (3)
(i) $f(x)>0(<0)$ for all values of $x \in R$ if and only if $\mathrm{a}>0(<0)$ and $\mathrm{D} \equiv \mathrm{b}^{2}-4 \mathrm{ac}<0$.
(ii) $f(x) \geq 0(\leq 0)$ if and only if a $>0(<0)$ and $D \equiv b^{2}-4 a c=0$.

In this case $(D=0), f(x)=0$ if and only if $x=-\frac{b}{2 a}$
(iii) If $\mathrm{D} \equiv \mathrm{b}^{2}-4 \mathrm{ac}>0$ and $\mathrm{a}>0(<0)$, then
$f(x)=\left[\begin{array}{ll}<0(>0), & \text { for } x \text { lying between the roots of } f(x)=0 \\ >0(<0), & \text { for } x \text { not lying between the roots of } f(x)=0 \\ =0, & \text { for } x=\text { each of the roots of } f(x)=0\end{array}\right.$
(iv) If $a>0,(<0)$, then $f(x)$ has a minimum (maximum) value at $x=-\frac{b}{2 a}$ and this value is given by
$[\mathrm{f}(\mathrm{x})]_{\min (\max)}=\frac{4 \mathrm{ac}-\mathrm{b}^{2}}{4 \mathrm{a}}$
(B) The sign of the expression :
(i) The value of expression $(x-a)(x-b)$; $(a<b)$ is positive if $x<a$ or $x>b$, in other words x does not lie between a and b.
(ii) The expression $(x-a)(x-b)$; $(a<b)$ is negative if $a<x<b$ i.e. if x lies between a and b.

Some important results :

- If $f(\alpha)=0$ and $f^{\prime}(\alpha)=0$, then α is a repeated root of the quadratic equation $f(x)=0$ and $f(x)=a(x-\alpha)^{2}$. In fact $\alpha=-\frac{b}{2 a}$.
- Imaginary and irrational roots occur in conjugate pairs (when $a, b, c \in R$ or a, b, c being rational) i.e., if $-3+2 \mathrm{i}$ or $5-2 \sqrt{7}$ is a root then $-3-2 \mathrm{i}$ or $5+2 \sqrt{7}$ will also be a root.
- For the quadratic equation $a x^{2}+b x+c=0$
(i) One root will be reciprocal of the other if $\mathrm{a}=\mathrm{c}$.
(ii) One root is zero if $\mathrm{c}=0$
(iii) Roots are equal in magnitude but opposite in sign if $\mathrm{b}=0$.
(iv) Both roots are zero if $\mathrm{b}=\mathrm{c}=0$.
(v) Roots are positive if a and c are of the same sign and b is of the opposite sign.
(vi) Roots are of opposite sign if a and c are of opposite sign.
(vii) Roots are negative if a, b, c are of the same sign.
- If the ratio of roots of the quadratic equation $a x^{2}+b x$ $+\mathrm{c}=0$ be $\mathrm{p}: q$, then $\mathrm{pqb}^{2}=(\mathrm{p}+\mathrm{q})^{2} \mathrm{ac}$.
- If one root of the quadratic equation $a x^{2}+b x+c=0$ be $p: q$, then $\mathrm{pqb}^{2}=(p+q)^{2} \mathrm{ac}$.
- If one root of the quadratic equation $a x^{2}+b x+c=0$ is equal to the $\mathrm{n}^{\text {th }}$ power of the other, then
$\left(\mathrm{ac}^{\mathrm{n}}\right)^{\frac{1}{\mathrm{n}+1}}+\left(\mathrm{a}^{\mathrm{n}} \mathrm{c}\right)^{\frac{1}{\mathrm{n}+1}}+\mathrm{b}=0$
- If one roots of the equation $a x^{2}+b x+c=0$ be n times the other root, then $\mathrm{nb}^{2}=\mathrm{ac}(\mathrm{n}+1)^{2}$.
- If the roots of the equation $a x^{2}+b x+c=0$ are of the form $\frac{\mathrm{k}+1}{\mathrm{k}}$ and $\frac{\mathrm{k}+2}{\mathrm{k}+1}$, then $(\mathrm{a}+\mathrm{b}+\mathrm{c})^{2}=\mathrm{b}^{2}-4 \mathrm{ac}$.
- If the roots of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ are α, β, then the roots of $\mathrm{cx}^{2}+\mathrm{bx}+\mathrm{a}=0$ will be $\frac{1}{\alpha}, \frac{1}{\beta}$.
- The roots of the equation $a x^{2}+b x+c=0$ are reciprocal to $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$ if $\left(c c^{\prime}-a a^{\prime}\right)^{2}=\left(b a^{\prime}-c b^{\prime}\right)\left(\mathrm{ab}^{\prime}-b c^{\prime}\right)$.
- Let $f(x)=a x^{2}+b x+c$, where $a>0$. Then
(i) Conditions for both the roots of $f(x)=0$ to be greater than a given number K are $b^{2}-4 a c \geq 0$;
$\mathrm{f}(\mathrm{K})>0 ; \frac{-\mathrm{b}}{2 \mathrm{a}}>\mathrm{K}$.
(ii) The number K lies between the roots of $f(x)=0$ if $\mathrm{f}(\mathrm{K})<0$.'
(iii) Condition for exactly one root of $f(x)=0$ to lie between d and e is $f(d) f(e)<0$.

