QUARDRATIC EQUATIONS

General quadratic equation :

An equation of the form

 $ax^2 + bx + c = 0$...(1)

where $a \neq 0$, is called a quadratic equation, in the real or complex coefficients a, b and c.

Roots of a quadratic equation :

The values of x, (say $x = \alpha$, β) which satisfy the quadratic equation (1) are called the roots of the equation and they are given by

$$\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{2a}; \beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

Discriminant of a quadratic equation :

The quantity $D \equiv b^2 - 4ac$, is known as the discriminant of the equation.

Nature of the Roots :

In the equations $ax^2 + bx + c = 0$, let us suppose that a, b, c are real and $a \neq 0$. The following is true about the nature of its roots-

- (i) The equation has real and distinct roots if and only if $D \equiv b^2 - 4ac > 0$.
- (ii) The equation has real and coincident (equal) roots if and only if $D \equiv b^2 - 4ac = 0$.
- (iii) The equation has complex roots of the form $\alpha \pm i\beta$, $\alpha \neq 0$, $\beta \neq 0 \in R$, if and only if $D \equiv b^2 4ac < 0$.
- (iv) The equation has rational roots if and only if a, b, $c \in Q$ (the set of rational numbers) and $D \equiv b^2 - 4ac$ is a perfect square (of a rational number).
- (v) The equation has (unequal) irrational (surd form) roots if and only if $D \equiv b^2 - 4ac > 0$ and not a perfect square even if a, b and c are rational. In this case if $p + \sqrt{q}$, p, q rational, is an irrational root, then $P - \sqrt{q}$ is also a root (a, b, c being rational).
- (vi) $\alpha + i\beta$ ($\beta \neq 0$ and α , $\beta \in R$) is a root if and only if its conjugate $\alpha - i\beta$ is a root, that is complex roots occur in pairs in a quadratic equation. In case the equations is satisfied by more than two complex numbers, then it reduces to an identitiy.

Relation between Roots and Coefficients :

If α , β are the roots of the quadratic equation $ax^2 + bx + c = 0$, then the sum and product of the roots is

$$\alpha + \beta = -\frac{b}{a}$$
 and $\alpha\beta = \frac{c}{a}$

Hence the quadratic equation whose roots are α and β is given by

$$x^{2} - (\alpha + \beta)x + \alpha\beta = 0$$
 or $(x - \alpha)(x - \beta) = 0$

Condition that the two quadratic equations have a common root :

Let α be a common root of two quadratic equations $a_1x^2 + b_1x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ where $a_1 \neq 0$, $a_2 \neq 0$ and $a_1b_2 - a_2b_1 \neq 0$. Then $a_1\alpha^2 + b_1\alpha + c_1 = 0$ and $a_2\alpha^2 + b_2\alpha + c_2 = 0$ which gives (by cross multipication),

$$\frac{\alpha^2}{b_1c_2 - b_2c_1} = \frac{\alpha}{c_1a_2 - c_2a_1} = \frac{1}{a_1b_2 - a_2b_1}$$

Thus eliminating α , the condition for a common root is given by

$$(c_1a_2 - c_2a_1)^2 = (b_1c_2 - b_2c_1)(a_1b_2 - a_2b_1)$$
 ...(2)

Condition that the two quadratic equations have both the roots common :

The two quadratic equation will have the same roots if and only if their coefficients are proportional, i.e.

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

Descarte's rule of signs :

The maximum number of positive of a polynomial f(x) is the number of changes of signs in f(x) and the maximum number of negative roots of f(x) is the number of changes of signs in f(-x).

Position of roots :

If f(x) = 0 is an equation and a, b are two real numbers such that f(a) f(b) < 0, then the equation f(x) = 0 has at least one real root or an odd number of real roots between a and b. In case f(a) and f(b) are of the same sign, then either no real root or an even number of real roots of f(x) = 0 lie between a and b.

 $0.x^2 + 0.x + 0 = 0$, i.e. a = 0 = b = c.

MANISH KALIA'S MATHEMATICS CLASSES 9878146388

The quadratic expression :

(A) Let $f(x) \equiv ax^2 + bx + c$, a, b, $c \in R$, a > d be a quadratic expression. Since,

$$f(x) = a \left\{ \left(x + \frac{b}{2a} \right)^2 - \left(\frac{b^2 - 4ac}{4a^2} \right) \right\} \qquad ...(3)$$

The following is true from equation (3)

- (i) f(x) > 0 (< 0) for all values of $x \in R$ if and only if a > 0 (< 0) and $D \equiv b^2 4ac < 0$.
- (ii) $f(x) \ge 0 \ (\le 0)$ if and only if $a > 0 \ (< 0)$ and $D \equiv b^2 4ac = 0$.

In this case (D = 0),
$$f(x) = 0$$
 if and only if $x = -\frac{b}{2a}$

(iii) If $D \equiv b^2 - 4ac > 0$ and a > 0 (< 0), then

$$f(\mathbf{x}) = \begin{bmatrix} <0(>0), & \text{ for x lying between the roots of } f(\mathbf{x}) = 0 \\ >0(<0), & \text{ for x not lying between the roots of } f(\mathbf{x}) = 0 \\ =0, & \text{ for x = each of the roots of } f(\mathbf{x}) = 0 \end{bmatrix}$$

(iv) If a > 0, (< 0), then f(x) has a minimum (maximum) value at $x = -\frac{b}{2a}$ and this value is

given by

$$[f(x)]_{\min(\max)} = \frac{4ac - b^2}{4a}$$

(B) The sign of the expression :

- (i) The value of expression (x − a) (x − b); (a < b) is positive if x < a or x > b, in other words x does not lie between a and b.
- (ii) The expression (x − a) (x − b); (a < b) is negative if a < x < b i.e. if x lies between a and b.

Some important results :

- If $f(\alpha) = 0$ and $f'(\alpha) = 0$, then α is a repeated root of the quadratic equation f(x) = 0 and $f(x) = a(x \alpha)^2$. In fact $\alpha = -\frac{b}{2a}$.
- Imaginary and irrational roots occur in conjugate pairs (when a, b, c ∈ R or a, b, c being rational) i.e., if -3 + 2i or 5 -2√7 is a root then -3 2i or 5 + 2√7 will also be a root.
- For the quadratic equation $ax^2 + bx + c = 0$
 - (i) One root will be reciprocal of the other if a = c.
 - (ii) One root is zero if c = 0
 - (iii) Roots are equal in magnitude but opposite in sign if b = 0.
 - (iv) Both roots are zero if b = c = 0.
 - (v) Roots are positive if a and c are of the same sign and b is of the opposite sign.
 - (vi) Roots are of opposite sign if a and c are of opposite sign.

(vii) Roots are negative if a, b, c are of the same sign.

- If the ratio of roots of the quadratic equation $ax^2 + bx + c = 0$ be p : q, then $pqb^2 = (p + q)^2ac$.
- If one root of the quadratic equation $ax^2 + bx + c = 0$ be p : q, then $pqb^2 = (p+q)^2ac$.
- If one root of the quadratic equation $ax^2 + bx + c = 0$ is equal to the nth power of the other, then

 $(ac^{n})^{\frac{1}{n+1}} + (a^{n}c)^{\frac{1}{n+1}} + b = 0$

- If one roots of the equation $ax^2 + bx + c = 0$ be n times the other root, then $nb^2 = ac(n + 1)^2$.
- If the roots of the equation $ax^2 + bx + c = 0$ are of the form $\frac{k+1}{k}$ and $\frac{k+2}{k+1}$, then $(a + b + c)^2 = b^2 4ac$.
- If the roots of $ax^2 + bx + c = 0$ are α , β , then the roots of $cx^2 + bx + a = 0$ will be $\frac{1}{\alpha}$, $\frac{1}{\beta}$.
- The roots of the equation $ax^2 + bx + c = 0$ are reciprocal to $a'x^2 + b'x + c' = 0$ if $(cc' - aa')^2 = (ba' - cb') (ab' - bc').$
- Let $f(x) = ax^2 + bx + c$, where a > 0. Then
 - (i) Conditions for both the roots of f(x) = 0 to be greater than a given number K are $b^2 4ac \ge 0$; -b

$$f(K) > 0; \frac{-0}{2a} > K.$$

- (ii) The number K lies between the roots of f(x) = 0 if f(K) < 0.'
- (iii) Condition for exactly one root of f(x) = 0 to lie between d and e is f(d) f(e) < 0.