MATRICES AND DETERMINANTS

Matrices :

- An $m \times n$ matrix is a rectangular array of $m n$ numbers (real or complex) arranged in an ordered set of m horizontal lines called rows and n vertical lines called columns enclosed in parentheses. An $m \times n$ matrix A is usually written as :

$$
A=\left[\begin{array}{cccccc}
a_{11} & a_{12} & \ldots & a_{1 j} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 j} & \ldots & a_{2 n} \\
\vdots & \vdots & & & & \\
a_{i 1} & a_{i 2} & \ldots & a_{i j} & \ldots & a_{i n} \\
\vdots & \vdots & & & & \\
a_{m 1} & a_{m 2} & \ldots & a_{m j} & \ldots & a_{m n}
\end{array}\right]
$$

Where $1 \leq \mathrm{i} \leq \mathrm{m}$ and $1 \leq \mathrm{j} \leq \mathrm{n}$
and is written in compact form as $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$

- A matrix $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$ is called
(i) a rectangular matrix if $\mathrm{m} \neq \mathrm{n}$
(ii) a square matrix if $\mathrm{m}=\mathrm{n}$
(iii) a row matrix or row vector if $\mathrm{m}=1$
(iv) a column matrix or column vector if $\mathrm{n}=1$
(v) a null matrix if $\mathrm{a}_{\mathrm{ij}}=0$ for all i, j and is denoted by $\mathrm{O}_{\mathrm{m} \times \mathrm{n}}$
(vi) a diagonal matrix if $\mathrm{a}_{\mathrm{ij}}=0$ for $\mathrm{i} \neq \mathrm{j}$
(vii) a scalar matrix if $\mathrm{a}_{\mathrm{ij}}=0$ for $\mathrm{i} \neq \mathrm{j}$ and all diagonal elements a_{ii} are equal
- Two matrices can be added only when thye are of same order. If $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$ and $\mathrm{B}=\left[\mathrm{b}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$, then sum of A and B is denoted by $A+B$ and is a matrix $\left[a_{i j}+b_{i j}\right]_{m \times n}$
- The product of two matrices A and B , written as AB , is defined in this very order of matrices if number of columns of A (pre factor) is equal to the number of rows of B (post factor). If $A B$ is defined, we say that A and B are conformable for multiplication in the order $A B$.
If $A=\left[a_{i j}\right]_{\mathrm{m} \times \mathrm{n}}$ and $\mathrm{B}=\left[\mathrm{b}_{\mathrm{ij}}\right]_{\mathrm{n} \times \mathrm{p}}$, then their product AB is a matrix $\mathrm{C}=\left[\mathrm{c}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{p}}$ where
$\mathrm{C}_{\mathrm{ij}}=$ sum of the products of elements of ith row of A with the corresponding elements of jth column of B.
- Types of matrices :
(i) Idempotent if $\mathrm{A}^{2}=\mathrm{A}$
(ii) Periodic if $\mathrm{A}^{\mathrm{k}+1}=\mathrm{A}$ for some positive integer k . The least value of k is called the period of A.
(iii) Nilpotent if $\mathrm{A}^{\mathrm{k}}=\mathrm{O}$ when k is a positive integer. Least value of k is called the index of the nilpotent matrix.
(iv) Involutary if $\mathrm{A}^{2}=\mathrm{I}$.
- The matrix obtained from a matrix $A=\left[a_{i j}\right]_{m \times n}$ by changing its rows into columns and columns of A into rows is called the transpose of A and is denoted by A^{\prime}.
- A square matrix $a=\left[a_{i j}\right]_{n \times n}$ is said to be
(i) Symmetric if $\mathrm{a}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{ji}}$ for all i and j i.e. if $\mathrm{A}^{\prime}=\mathrm{A}$.
(ii) Skew-symmetric if
$a_{i j}=-a_{j i}$ for all i and j i.e., if $A^{\prime}=-A$.
- Every square matrix A can be uniquely written as sum of a symmetric and a skew-symmetric matrix.
$A=\frac{1}{2}\left(A+A^{\prime}\right)+\frac{1}{2}\left(A-A^{\prime}\right)$ where $\frac{1}{2}\left(A+A^{\prime}\right)$ is symmetric and $\frac{1}{2}\left(\mathrm{~A}-\mathrm{A}^{\prime}\right)$ is skew-symmetric.
- Let $A=\left[a_{i j}\right]_{\mathrm{m} \times{ }_{\mathrm{n}}}$ be a given matrix. Then the matrix obtained from A by replacing all the elements by their conjugate complex is called the conjugate of the matrix A and is denoted by $\overline{\mathrm{A}}=\left[\overline{\mathrm{a}}_{\mathrm{ij}}\right]$.

Properties:

(i) $\overline{(\overline{\mathrm{A}})}=\mathrm{A}$
(ii) $\overline{(\mathrm{A}+\mathrm{B})}=\overline{\mathrm{A}}+\overline{\mathrm{B}}$
(iii) $\overline{(\lambda \mathrm{A})}=\bar{\lambda} \overline{\mathrm{A}}$, where λ is a scalar
(iv) $\overline{(\mathrm{AB})}=\overline{\mathrm{A}} \overline{\mathrm{B}}$.

Determinant :

Consider the set of linear equations $a_{1} x+b_{1} y=0$ and $a_{2} x+b_{2} y=0$, where on eliminating x and y we get the eliminant $\mathrm{a}_{1} \mathrm{~b}_{2}-\mathrm{a}_{2} \mathrm{~b}_{1}=0$; or symbolically, we write in the determinant notation

$$
\left|\begin{array}{ll}
\mathrm{a}_{1} & \mathrm{~b}_{1} \\
\mathrm{a}_{2} & \mathrm{~b}_{2}
\end{array}\right| \equiv \mathrm{a}_{1} \mathrm{~b}_{2}-\mathrm{a}_{2} \mathrm{~b}_{1}=0
$$

Here the scalar $a_{1} b_{2}-a_{2} b_{1}$ is said to be the expansion of the 2×2 order determinant $\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$ having 2 rows and 2 columns.
Similarly, a determinant of 3×3 order can be expanded as :
$\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|=a_{1}\left|\begin{array}{ll}b_{2} & c_{2} \\ b_{3} & c_{3}\end{array}\right|-b_{1}\left|\begin{array}{ll}a_{2} & c_{2} \\ a_{3} & c_{3}\end{array}\right|+c_{1}\left|\begin{array}{ll}a_{2} & b_{2} \\ a_{3} & b_{3}\end{array}\right|$
$=a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-b_{1}\left(a_{2} c_{3}-a_{3} c_{2}\right)+c_{1}\left(a_{2} b_{3}-a_{3} b_{2}\right)$
$=a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-a_{2}\left(b_{1} c_{3}-b_{3} c_{1}\right)+a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right)$
$=\Sigma\left(\pm \mathrm{a}_{\mathrm{i}} \mathrm{b}_{\mathrm{j}} \mathrm{c}_{\mathrm{k}}\right)$

- To every square matrix $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times{ }_{\mathrm{n}}}$ is associated a number of function called the determinant of A and is denoted by $|\mathrm{A}|$ or $\operatorname{det} \mathrm{A}$.
Thus, $|\mathrm{A}|=\left|\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n}\end{array}\right|$
- If $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{n} \times \mathrm{n}}$, then the matrix obtained from A after deleting ith row and jth column is called a submatrix of A. The determinant of this submatrix is called a minor or a_{ij}.
- Sum of products of elements of a row (or column) in a det with their corresponding cofactors is equal to the value of the determinant.
i.e., $\sum_{i=1}^{n} \mathrm{a}_{\mathrm{ij}} \mathrm{C}_{\mathrm{ij}}=|\mathrm{A}|$ and $\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ij}} \mathrm{C}_{\mathrm{ij}}=|\mathrm{A}|$.
- (i) If all the elements of any two rows or two columns of a determinant ate either identical or proportional, then the determinant is zero.
(ii) If A is a square matrix of order n , then

$$
|\mathrm{kA}|=\mathrm{k}^{\mathrm{n}}|\mathrm{~A}| .
$$

(iii) If Δ is determinant of order n and Δ^{\prime} is the determinant obtained from Δ by replacing the elements by the corresponding cofactors, then

$$
\Delta^{\prime}=\Delta^{\mathrm{n}-1}
$$

(iv) Determinant of a skew-symmetric matrix of odd order is always zero.

- The determinant of a square matrix can be evaluated by expanding from any row or column.
- If $A=\left[a_{i j}\right]_{n \times n}$ is a square matrix and $C_{i j}$ is the cofactor of a_{ij} in A , then the transpose of the matrix obtained from A after replacing each element by the corresponding cofactor is called the adjoint of A and is denoted by adj. A.
Thus, adj. $\mathrm{A}=\left[\mathrm{C}_{\mathrm{ij}}\right]^{\prime}$.
Properties of adjoint of a square matrix
(i) If A is a square matrix of order n , then

$$
A .(\operatorname{adj} . A)=(\operatorname{adj} . A) A=|A| I_{n}
$$

(ii) If $|\mathrm{A}|=0$, then $\mathrm{A}(\operatorname{adj} . \mathrm{A})=(\operatorname{adj} . \mathrm{A}) \mathrm{A}=\mathrm{O}$.
(iii) $|\operatorname{adj} . A|=|A|^{n-1}$ if $|A| \neq 0$
(iv) adj. $(\mathrm{AB})=($ adj. B$)($ adj. A$)$.
(v) adj. (adj. A) $=|A|^{n-2} A$.

- Let A be a square matrix of order n . Then the inverse of A is given by $A^{-1}=\frac{1}{|A|}$ adj. A.
- Reversal law : If A, B, C are invertible matrices of same order, then
(i) $(\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1}$
(ii) $(\mathrm{ABC})^{-1}=\mathrm{C}^{-1} \mathrm{~B}^{-1} \mathrm{~A}^{-1}$
- Criterion of consistency of a system of linear equations
(i) The non-homogeneous system $\mathrm{AX}=\mathrm{B}, \mathrm{B} \neq 0$ has unique solution if $|\mathrm{A}| \neq 0$ and the unique solution is given by $X=A^{-1} B$.
(ii) Cramer's Rule : If $|\mathrm{A}| \neq 0$ and $\mathrm{X}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)^{\prime}$ then for each $\mathrm{i}=1,2,3, \ldots, \mathrm{n} ; \mathrm{x}_{\mathrm{i}}=\frac{\left|\mathrm{A}_{\mathrm{i}}\right|}{|\mathrm{A}|}$ where
Ai is the matrix obtained from A by replacing the ith column with B .
(iii) If $|\mathrm{A}|=0$ and (adj. A) $\mathrm{B}=\mathrm{O}$, then the system $\mathrm{AX}=\mathrm{B}$ is consistent and has infinitely many solutions.
(iv) If $|\mathrm{A}|=0$ and (adj. A$) \mathrm{B} \neq \mathrm{O}$, then the system $\mathrm{AX}=\mathrm{B}$ is inconsistent.
(v) If $|\mathrm{A}| \neq 0$ then the homogeneous system $\mathrm{AX}=\mathrm{O}$ has only null solution or trivial solution
(i.e., $x_{1}=0, x_{2}=0, \ldots x_{n}=0$)
(vi) If $|\mathrm{A}|=0$, then the system $\mathrm{AX}=\mathrm{O}$ has non-null solution.
- (i) Area of a triangle having vertices at $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ is given by $\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$
(ii) Three points $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $\mathrm{C}\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$ are collinear iff area of $\triangle A B C=0$.
- A square matrix A is called an orthogonal matrix if $\mathrm{AA}^{\prime}=\mathrm{AA}^{\prime}=\mathrm{I}$.
- A square matrix A is called unitary if $A A^{\theta}=A^{\theta} A=I$
(i) The determinant of a unitary matrix is of modulus unity.
(ii) If A is a unitary matrix then $\mathrm{A}^{\prime}, \overline{\mathrm{A}}, \mathrm{A}^{\theta}, \mathrm{A}^{-1}$ are unitary.
(iii) Product of two unitary matrices is unitary.
- Differentiation of Determinants :

Let $A=\left|C_{1} C_{2} C_{3}\right|$ is a determinant then
$\frac{\mathrm{dA}}{\mathrm{dx}}=\left|\mathrm{C}_{1}^{\prime} \mathrm{C}_{2} \mathrm{C}_{3}\right|+\left|\mathrm{C}_{1} \mathrm{C}_{2}^{\prime} \mathrm{C}_{3}\right|+\left|\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}^{\prime}\right|$
Same process we have for row.
Thus, to differentiate a determinant, we differentiate one column (or row) at a time, keeping others unchanged.

