MANISH KALIA'S MATHEMATICS CLASSES

9878146388

DIFFERENTIATION

Differentiation and Applications of Derivatives :

• If y = f(x), then

1.
$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

2.
$$\left(\frac{dy}{dx}\right)_{x=a} = \lim_{x \to a} \frac{f(x) - f(a)}{x-a}$$

3.
$$\left(\frac{dy}{dx}\right)_{x=a} = \lim_{x \to h} \frac{f(a+h) - f(a)}{h}$$

• If u = f(x), $v = \phi(x)$, then

1.
$$\frac{\mathrm{d}}{\mathrm{d}x}(\mathrm{k}) = 0$$

2. $\frac{\mathrm{d}}{\mathrm{d}x}(\mathrm{ku}) = \mathrm{k}\frac{\mathrm{d}\mathrm{u}}{\mathrm{d}x}$

3.
$$\frac{d}{dx}(u \pm v) = \frac{du}{dx} \pm \frac{dv}{dx}$$

4.
$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

5. $\frac{du}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

6. If
$$x = f(t)$$
, $y = \phi(t)$, then $\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt}$
7. If $y = f[\phi(x)]$, then $\frac{dy}{dx} = f'[\phi(x)]$. $\frac{d}{dx}[\phi(x)]$

8. If w = f(y), then
$$\frac{dw}{dx} = f'(y) \frac{dy}{dx}$$

9. If
$$y = f(x)$$
, $z = \phi(x)$, then $\frac{dy}{dz} = \frac{dy}{dx} \cdot \frac{dx}{dz}$

10.
$$\frac{dy}{dx} \cdot \frac{dx}{dy} = 1$$
 or $\frac{dy}{dx} = \frac{1}{dx/dy}$

• 1.
$$\frac{d}{dx}(k) = 0$$

2. $\frac{d}{dx}x^{n} = nx^{n-1}$

$$3. \quad \frac{\mathrm{d}}{\mathrm{dx}} \frac{1}{\mathrm{x}^{\mathrm{n}}} = -\frac{\mathrm{n}}{\mathrm{x}^{\mathrm{n+1}}}$$

4.
$$\frac{d}{dx} \sqrt{x} = \frac{1}{2\sqrt{x}}$$
5.
$$\frac{d}{dx} e^{x} = e^{x}$$
6.
$$\frac{d}{dx} a^{x} = a^{x} \log a$$
7.
$$\frac{d}{dx} \log x = \frac{1}{x}$$
8.
$$\frac{d}{dx} \log_{a} x = \frac{1}{x} \log_{a} e$$
9.
$$\frac{d}{dx} \sin x = \cos x$$
10.
$$\frac{d}{dx} \cos x = -\sin x$$
11.
$$\frac{d}{dx} \tan x = \sec^{2} x$$
12.
$$\frac{d}{dx} \cot x = -\csc^{2} x$$
13.
$$\frac{d}{dx} \sec x = \sec x \tan x$$
14.
$$\frac{d}{dx} \csc x = \sec x \tan x$$
15.
$$\frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{1 - x^{2}}}$$
16.
$$\frac{d}{dx} \cos^{-1} x = -\frac{1}{\sqrt{1 - x^{2}}}$$
17.
$$\frac{d}{dx} \tan^{-1} x = \frac{1}{1 + x^{2}}$$
18.
$$\frac{d}{dx} \cot^{-1} x = -\frac{1}{1 + x^{2}}$$
19.
$$\frac{d}{dx} \sec^{-1} x = \frac{1}{x\sqrt{x^{2} - 1}}$$
20.
$$\frac{d}{dx} \csc^{-1} x = -\frac{1}{x\sqrt{x^{2} - 1}}$$

MANISH KALIA'S MATHEMATICS CLASSES

9878146388

- Suitable substitutions : The functions any also be reduced to simplar forms by the substitutions as follows.
 - 1. If the function involve the term $\sqrt{(a^2 x^2)}$, then put x = a sin θ or x = a cos θ .
 - 2. If the function involve the term $\sqrt{(a^2 + x^2)}$, then put x = a tan θ or x = a cot θ .
 - 3. If the function involve the term $\sqrt{(x^2 a^2)}$, then put x = a sec θ or x = a cosec θ .
 - 4. If the function involve the term $\sqrt{\frac{a-x}{a+x}}$, then put

 $x = a \cos \theta$ or $x = a \cos 2\theta$

All the above substitutions are also true, if a = 1

• Differentiation by taking logarithm :

Differentiation of the functions of the following types are obtained by taking logarithm.

- 1. When the functions consists of the product and quotient of a number of functions.
- 2. When a function of x is raised to a power which is itself a function of x.

For example, let $y = [f(x)]^{\phi(x)}$

Taking logarithm of both sides, $\log y = \phi(x) \log f(x)$ Differentiating both sides w.r.t 'x',

$$\frac{1}{y} \frac{dy}{dx} = \phi'(x) \log f(x) + \phi(x). \frac{f'(x)}{f(x)}$$
$$= [f(x)]^{\phi(x)} \log f(x).\phi'(x) + \phi(x) \cdot [f(x)^{\phi(x)-1}.f'(x)]$$

 $\frac{dy}{dx}$ = Differential of y treading f(x) as constant +

Differential of y treating $\phi(x)$ as constant.

It is an important formula.

• Differentiation of implicit functions :

1. If f(x, y) = 0 is a implicit function, then

$$\frac{dy}{dx} = -\frac{\partial f / \partial x}{\partial f / \partial y}$$
Diff. of f w

 $= - \frac{\text{Diff. of f w.r.t. x keeping y constant}}{\text{Diff. of f w.r.t. y keeping x constant}}$

For example, consider $f(x, y) = x^2 + 3xy + y^2 = 0$, then

$$\frac{dy}{dx} = - \frac{\partial f \, / \, \partial x}{\partial f \, / \, \partial y} = - \frac{2x + 3y}{3x + 2y}$$

1. If y = f(x), then

$$\frac{dy}{dx} = y_1 = f'(x), \quad \frac{d^2y}{dx^2} = y_2 = f''(x), \dots$$

$$\frac{d^{2}y}{dx^{n}} = y_{n} = f^{n}(x)$$
2. $\frac{d^{n}}{dx^{n}} (ax + b)^{n} = n ! a^{n}$
3. $\frac{d^{n}}{dx^{n}} (ax + b)^{m} = m(m - 1)$
.... $(m - n + 1) a^{n}(ax + b)^{m-n}$
4. $\frac{d^{n}}{dx^{n}} e^{mx} = m^{n}e^{mx}$
5. $\frac{d^{n}}{dx^{n}} a^{mx} = m^{n}a^{mx}(\log a)^{n}$
6. $\frac{d^{n}}{dx^{n}} \log(ax + b) = \frac{(-1)^{n-1}a^{n}(n-1)!}{(ax + b)^{n}}$
7. $\frac{d^{n}}{dx^{n}} \sin(ax + b) = a^{n} \sin\left(ax + b + \frac{n\pi}{2}\right)$

8.
$$\frac{d^n}{dx^n}\cos(ax+b) = a^n\cos\left(ax+b+\frac{n\pi}{2}\right)$$

• Leibnitz's theorem : If u and v are any two functions of x such that their desired differential coefficients exist, then the nth differential coefficient of uv is given by

$$\begin{split} D^n(uv) &= (D^n u)v + {}^nC_1(D^{n-1}u)(Dv) \\ &+ {}^nC_2(D^{n-2}u)(D^2v) + + u(D^nv) \end{split}$$