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Differentiation and Applications of Derivatives : 
 If y = f(x), then 
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 If u = f(x), v = φ(x), then 
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 6. If x = f(t), y = φ (t), then 
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 Suitable substitutions : The functions any also be 
reduced to simplar forms by the substitutions as 
follows. 

 1. If the function involve the term )xa( 22 − , then 
put x = a sin θ or x = a cos θ. 

 2. If the function involve the term )xa( 22 + , then 
put x = a tan θ or x = a cot θ. 

 3. If the function involve the term )ax( 22 − , then 
put x = a sec θ or x = a cosec θ. 

 4. If the function involve the term 
xa
xa

+
− , then put 

x = a cos θ or x = a cos 2θ 
 All the above substitutions are also true, if a = 1 

 Differentiation by taking logarithm : 
 Differentiation of the functions of the following types 

are obtained by taking logarithm. 
 1. When the functions consists of the product and 

quotient of a number of functions. 
 2. When a function of x is raised to a power which is 

itself a function of x. 
 For example, let y = [f(x)]φ(x) 
 Taking logarithm of both sides, log y = φ(x) log f(x) 
 Differentiating both sides w.r.t 'x', 

 
y
1

dx
dy  = φ´(x) log f(x) + φ(x). 
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  = [f(x)]φ(x) logf(x).φ´(x) + φ(x) . [f(x)φ(x) – 1.f´(x) 

 
dx
dy  = Differential of y treading f(x) as constant + 

Differential of y treating φ(x) as constant. 
 It is an important formula.  

 Differentiation of implicit functions : 
 1. If f(x, y) = 0 is a implicit function, then  
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 For example, consider f(x, y) = x2 + 3xy + y2 = 0, 
then  
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 1. If y = f(x), then  
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 Leibnitz's theorem : If u and v are any two 
functions of x such that their desired differential 
coefficients exist, then the nth differential coefficient 
of uv is given by  

  Dn(uv) = (Dnu)v + nC1(Dn–1u)(Dv)  
          + nC2(Dn–2u)(D2v) +...... + u(Dnv) 
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