MANISH KALIA'S MATHEMATICS CLASSES 9878146388

FUNCTIONS

Definition of a Function :

Let A and B be two sets and f be a rule under which every element of A is associated to a unique element of B. Then such a rule f is called a function from A to B and symbolically it is expressed as

$$f: A \rightarrow B$$

or
$$A \xrightarrow{f} B$$

Function as a Set of Ordered Pairs

Every function $f: A \rightarrow B$ can be considered as a set of ordered pairs in which first element is an element of A and second is the image of the first element. Thus

$$f = \{a, f(a) | a \in A, f(a) \in B\}.$$

Domain, Codomain and Range of a Function :

If $f: A \rightarrow B$ is a function, then A is called domain of f and B is called codomain of f. Also the set of all images of elements of A is called the range of f and it is expressed by f(A). Thus

$$f(A) = \{f(a) \mid a \in A\}$$

obviously $f(A) \subset B$.

Note : Generally we denote domain of a function f by D_f and its range by R_f .

Equal Functions :

Two functions f and g are said to be equal functions if

- domain of f = domain of g
- codomain of f = codomain of g
- $f(x) = g(x) \forall x$.

Algebra of Functions :

If f and g are two functions then their sum, difference, product, quotient and composite are denoted by

and they are defined as follows :

$$(f + g) (x) = f(x) + g(x)$$

(f - g) (x) = f(x) - g(x)
(fg) (x) = f(x) f(g)
(f/g) (x) = f(x)/g(x) (g(x) \neq 0)
(fog) (x) = f[g(x)]

Formulae for domain of functions :

- $D_{f\pm g} = D_f \cap D_g$
- $D_{fg} = D_f \cap D_g$
- $D_{f/g} = D_f \cap D_g \cap \{x \mid g(x) \neq 0\}$
- $D_{gof} = \{x \in D_f \mid f(x) \in D_g\}$
- $D_{\sqrt{f}} = D_f \cap \{x \mid f(x) \ge 0\}$

Classification of Functions

1. Algebraic and Transcendental Functions :

- Algebraic functions : If the rule of the function consists of sum, difference, product, power or roots of a variable, then it is called an algebraic function.
- **Transcendental Functions :** Those functions which are not algebraic are named as transcendental or non algebraic functions.

2. Even and Odd Functions :

• Even functions : If by replacing x by -x in f(x) there in no change in the rule then f(x) is called an even function. Thus

f(x) is even $\Leftrightarrow f(-x) = f(x)$

MANISH KALIA'S MATHEMATICS CLASSES 9878146388

• Odd function : If by replacing x by -x in f(x) there is only change of sign of f(x) then f(x) is called an odd function. Thus

f(x) is odd $\Leftrightarrow f(-x) = -f(x)$

- 3. Explicit and Implicit Functions :
 - Explicit function : A function is said to be explicit if its rule is directly expressed (or can be expressed(in terms of the independent variable. Such a function is generally written as

y = f(x), x = g(y) etc.

• **Implicit function :** A function is said to be implicit if its rule cannot be expressed directly in terms of the independent variable. Symbolically we write such a function as

 $f(x, y) = 0, \phi(x, y) = 0$ etc.

4. Continuous and Discontinuous Functions :

- **Continuous functions :** A functions is said to be continuous if its graph is continuous i.e. there is no gap or break or jump in the graph.
- **Discontinuous Functions** : A function is said to be discontinuous if it has a gap or break in its graph atleast at one point. Thus a function which is not continuous is named as discontinuous.

5. Increasing and Decreasing Functions :

• Increasing Functions : A function f(x) is said to be increasing function if for any x₁, x₂ of its domain

$$x_1 < x_2 \Longrightarrow f(x_1) \le f(x_2)$$

or
$$x_1 > x_2 \Longrightarrow f(x_1) \ge f(x_2)$$

• Decreasing Functions : A function f(x) is said to be decreasing function if for any x₁, x₂ of its domain

$$\mathbf{x}_1 < \mathbf{x}_2 \Longrightarrow \mathbf{f}(\mathbf{x}_1) \ge \mathbf{f}(\mathbf{x}_2)$$

or
$$x_1 > x_2 \Longrightarrow f(x_1) \le f(x_2)$$

Periodic Functions :

A functions f(x) is called a periodic function if there exists a positive real number T such that

$$\mathbf{f}(\mathbf{x} + \mathbf{T}) = \mathbf{f}(\mathbf{x}). \qquad \forall \mathbf{x}$$

Also then the least value of T is called the period of the function f(x).

Period of f(x) = T

 \Rightarrow Period of f(nx + a) = T/n

Periods of some functions :

Function	Period	
sin x, cos x, sec x, cosec x,	2π	
tan x, cot x	π	
$\sin^n x$, $\cos^n x$, $\sec^n x$, $\csc^n x$	2π if n is odd	
	π if n is even	
tan ⁿ x, cot ⁿ x	$\pi \; \forall \; n \in N$	
sin x , cos x , sec x , cosec x	π	
$ \tan x , \cot x ,$	π	
$ \sin x + \cos x , \sin^4 x + \cos^4 x$	<u>π</u>	
$ \sec x + \csc x $	2	
$ \tan x + \cot x $	<u>π</u>	
	2	
x – [x]	1	
• Period of $f(x) = T \Rightarrow$ period of $f(ax + b) = T/ a $		
• Period of $f_1(x) = T_1$, period fo $f_2(x) = T_2$		
\Rightarrow period of a f ₁ (x) + bf ₂ (x) \leq LCM {T ₁ , T ₂ }		

Kinds of Functions :

• One-one/ May one Functions :

A function $f : A \rightarrow B$ is said to be one-one if different elements of A have their different images in B.

Thus

f is one-one
$$\begin{cases} a \neq b \implies f(a) \neq f(b) \\ or \\ f(a) = f(b) \implies a = b \end{cases}$$

A function which is not one-one is called many one. Thus if f is many one then atleast two different elements have same f-image.

• Onto/Into Functions : A function f : A → B is said to be onto if range of f = codomain of f

Thus f is onto $\Leftrightarrow f(A) = B$

MANISH KALIA'S MATHEMATICS CLASSES 9878146388

Hence $f : A \rightarrow B$ is onto if every element of B (co-domain) has its f-preimage in A (domain).

A function which is not onto is named as into function. Thus $f: A \rightarrow B$ is into if $f(A) \neq B$. i.e., if there exists atleast one element in codomain of f which has no preimage in domain.

Note :

Total number of functions : If A and B are finite sets containing m and n elements respectively, then

- total number of functions which can be defined from A to $B = n^m$.
- total number of one-one functions from A to B

$$= \begin{cases} {}^n p_m & \text{if} \quad m \le n \\ 0 & \text{if} \quad m > n \end{cases}$$

total number of onto functions from A to B (if m ≥ n) = total number of different n groups of m elements.

Composite of Functions :

Let $f : A \to B$ and $g : B \to C$ be two functions, then the composite of the functions f and g denoted by gof, is a function from A to C given by gof : $A \to C$, (gof) (x) = g[f(x)].

Properties of Composite Function :

The following properties of composite functions can easily be established.

• Composite of functions is not commutative i.e.,

 $\mathrm{fog} \neq \mathrm{gof}$

• Composite of functions is associative i.e.

(fog)oh = fo(goh)

• Composite of two bijections is also a bijection.

Inverse Function :

If $f: A \rightarrow B$ is one-one onto, then the inverse of f i.e., f^{-1} is a function from B to A under which every $b \in B$ is associated to that $a \in A$ for which f(a) = b.

Thus
$$f^{-1}: B \to A$$
,
 $f^{-1}(b) = a \Leftrightarrow f(a) = b$.

Domain and Range of some standard functions :

Function	Domain	Range
Polynomial function	R	R
Identity function x	R	R
Constant function c	R	{c}
Reciprocal function 1/x	R ₀	R ₀
\mathbf{x}^2 , $ \mathbf{x} $	R	$R^{+} \cup \{0\}$
x^3 , $x x $	R	R
Signum function	R	{-1, 0, 1}
$\mathbf{x} + \mathbf{x} $	R	$R^{\scriptscriptstyle +} \cup \{0\}$
$ \mathbf{x} - \mathbf{x} $	R	$R^- \cup \{0\}$
[x]	R	Ζ
x – [x]	R	[0, 1)
$\sqrt{\mathbf{x}}$	$[0,\infty)$	$[0,\infty)$
a ^x	R	R^+
log x	R^+	R
sin x	R	[-1, 1]
cos x	R	[-1, 7]
tan x	$R - \{\pm \pi/2, \pm 3\pi/2,\}$	R
cot x	$R - \{0, \pm \pi. \pm 2\pi, \dots$	R
sec x	$R - (\pm \pi/2, \pm 3\pi/2, \dots)$	R – (–1, 1)
cosec x	$R - \{0, \pm \pi, \pm 2\pi, \dots\}$	R –(–1, 1)
sinh x	R	R
cosh x	R	[1,∞)
tanh x	R	(-1, 1)
coth x	R ₀	R −[1, −1]
sech x	R	(0, 1]
cosech x	R ₀	R ₀
sin ⁻¹ x	[-1, 1]	[-π/2, π/2]
cos ⁻¹ x	[-1, 1]	[0, π]
tan ⁻¹ x	R	(-π/2, π/2}
$\cot^{-1} x$	R	(0, π)
sec ⁻¹ x	R –(–1, 1)	$[0, \pi] - {\pi/2}$
cosec ⁻¹ x	R – (–1, 1)	$(-\pi/2,\pi/2] - \{0\}$