FUNCTIONS

Definition of a Function :

Let A and B be two sets and f be a rule under which every element of A is associated to a unique element of B. Then such a rule f is called a function from A to B and symbolically it is expressed as

$$
\begin{array}{ll}
& \mathrm{f}: \mathrm{A} \rightarrow \mathrm{~B} \\
\text { or } & \mathrm{A} \xrightarrow{\mathrm{f}} \mathrm{~B}
\end{array}
$$

Function as a Set of Ordered Pairs

Every function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ can be considered as a set of ordered pairs in which first element is an element of A and second is the image of the first element. Thus

$$
\mathrm{f}=\{\mathrm{a}, \mathrm{f}(\mathrm{a}) / \mathrm{a} \in \mathrm{~A}, \mathrm{f}(\mathrm{a}) \in \mathrm{B}\} .
$$

Domain, Codomain and Range of a Function :

If $f: A \rightarrow B$ is a function, then A is called domain of f and B is called codomain of f. Also the set of all images of elements of A is called the range of f and it is expressed by $f(A)$. Thus

$$
\mathrm{f}(\mathrm{~A})=\{\mathrm{f}(\mathrm{a}) \mid \mathrm{a} \in \mathrm{~A}\}
$$

obviously $\quad f(A) \subset B$.
Note : Generally we denote domain of a function f by D_{f} and its range by R_{f}.

Equal Functions :

Two functions f and g are said to be equal functions if

- domain of $f=$ domain of g
- codomain of $f=$ codomain of g
- $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \forall \mathrm{x}$.

Algebra of Functions :

If f and g are two functions then their sum, difference, product, quotient and composite are denoted by

$$
f+g, f-g, f g, f / g, f o g
$$

and they are defined as follows :

$$
\begin{aligned}
& (\mathrm{f}+\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x}) \\
& (\mathrm{f}-\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x}) \\
& (\mathrm{fg})(\mathrm{x})=\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{~g}) \\
& (\mathrm{f} / \mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x}) / \mathrm{g}(\mathrm{x}) \quad(\mathrm{g}(\mathrm{x}) \neq 0) \\
& (\mathrm{fog})(\mathrm{x})=\mathrm{f}[\mathrm{~g}(\mathrm{x})]
\end{aligned}
$$

Formulae for domain of functions :

- $D_{f \pm g}=D_{f} \cap D_{g}$
- $D_{f g}=D_{f} \cap D_{g}$
- $\mathrm{D}_{\mathrm{f} / \mathrm{g}}=\mathrm{D}_{\mathrm{f}} \cap \mathrm{D}_{\mathrm{g}} \cap\{\mathrm{x} \mid \mathrm{g}(\mathrm{x}) \neq 0\}$
- $D_{g o f}=\left\{x \in D_{f} \mid f(x) \in D_{g}\right\}$
- $\mathrm{D}_{\sqrt{\mathrm{f}}}=\mathrm{D}_{\mathrm{f}} \cap\{\mathrm{x} \mid \mathrm{f}(\mathrm{x}) \geq 0\}$

Classification of Functions

1. Algebraic and Transcendental Functions:

- Algebraic functions : If the rule of the function consists of sum, difference, product, power or roots of a variable, then it is called an algebraic function.
- Transcendental Functions : Those functions which are not algebraic are named as transcendental or non algebraic functions.

2. Even and Odd Functions :

- Even functions : If by replacing x by $-x$ in $f(x)$ there in no change in the rule then $f(x)$ is called an even function. Thus
$f(x)$ is even $\Leftrightarrow f(-x)=f(x)$
- Odd function : If by replacing x by -x in $\mathrm{f}(\mathrm{x})$ there is only change of sign of $f(x)$ then $f(x)$ is called an odd function. Thus

$$
\mathrm{f}(\mathrm{x}) \text { is odd } \Leftrightarrow \mathrm{f}(-\mathrm{x})=-\mathrm{f}(\mathrm{x})
$$

3. Explicit and Implicit Functions:

- Explicit function : A function is said to be explicit if its rule is directly expressed (or can be expressed(in terms of the independent variable. Such a function is generally written as $y=f(x), x=g(y)$ etc.
- Implicit function : A function is said to be implicit if its rule cannot be expressed directly in terms of the independent variable. Symbolically we write such a function as
$\mathrm{f}(\mathrm{x}, \mathrm{y})=0, \phi(\mathrm{x}, \mathrm{y})=0$ etc.

4. Continuous and Discontinuous Functions :

- Continuous functions : A functions is said to be continuous if its graph is continuous i.e. there is no gap or break or jump in the graph.
- Discontinuous Functions: A function is said to be discontinuous if it has a gap or break in its graph atleast at one point. Thus a function which is not continuous is named as discontinuous.

5. Increasing and Decreasing Functions :

- Increasing Functions: A function $f(x)$ is said to be increasing function if for any $\mathrm{x}_{1}, \mathrm{x}_{2}$ of its domain

$$
\begin{array}{ll}
& x_{1}<x_{2} \Rightarrow f\left(x_{1}\right) \leq f\left(x_{2}\right) \\
\text { or } & x_{1}>x_{2} \Rightarrow f\left(x_{1}\right) \geq f\left(x_{2}\right)
\end{array}
$$

- Decreasing Functions : A function $f(x)$ is said to be decreasing function if for any $\mathrm{x}_{1}, \mathrm{x}_{2}$ of its domain

$$
\begin{array}{ll}
& \mathrm{x}_{1}<\mathrm{x}_{2} \Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right) \geq \mathrm{f}\left(\mathrm{x}_{2}\right) \\
\text { or } & \mathrm{x}_{1}>\mathrm{x}_{2} \Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right) \leq \mathrm{f}\left(\mathrm{x}_{2}\right)
\end{array}
$$

Periodic Functions :

A functions $f(x)$ is called a periodic function if there exists a positive real number T such that

$$
\mathrm{f}(\mathrm{x}+\mathrm{T})=\mathrm{f}(\mathrm{x}) . \quad \forall \mathrm{x}
$$

Also then the least value of T is called the period of the function $\mathrm{f}(\mathrm{x})$.

$$
\begin{aligned}
& \text { Period of } f(x)=T \\
\Rightarrow & \text { Period of } f(n x+a)=T / n
\end{aligned}
$$

Periods of some functions:

Function	Period
$\sin \mathrm{x}, \cos \mathrm{x}, \sec \mathrm{x}, \operatorname{cosec} \mathrm{x}$,	2π
$\tan \mathrm{X}, \cot \mathrm{x}$	π
$\sin ^{n} \mathrm{x}, \cos ^{n} \mathrm{x}, \sec ^{n} \mathrm{x}, \operatorname{cosec}^{n} \mathrm{x}$	2π if n is odd π if n is even
$\tan ^{n} \mathrm{x}, \cot ^{\mathrm{n}} \mathrm{x}$	$\pi \forall \mathrm{n} \in \mathrm{N}$
$\|\sin \mathrm{x}\|$, $\|\cos \mathrm{x}\|,\|\sec \mathrm{x}\|,\|\operatorname{cosec} \mathrm{x}\|$	π
$\|\tan \mathrm{x}\|,\|\cot \mathrm{x}\|$,	π
$\begin{aligned} & \|\sin \mathrm{x}\|+\|\cos \mathrm{x}\|, \sin ^{4} \mathrm{x}+\cos ^{4} \mathrm{x} \\ & \|\sec \mathrm{x}\|+\|\operatorname{cosec} \mathrm{x}\| \end{aligned}$	$\frac{\pi}{2}$
$\|\tan \mathrm{x}\|+\|\cot \mathrm{x}\|$	$\frac{\pi}{2}$
$\mathrm{x}-\mathrm{x}]$	1
- Period of $\mathrm{f}(\mathrm{x})=\mathrm{T} \Rightarrow$ period of $\mathrm{f}(\mathrm{ax}+\mathrm{b})=\mathrm{T} /\|\mathrm{a}\|$	
- Period of $f_{1}(x)=T_{1}$, period fo $f_{2}(x)=T_{2}$ \Rightarrow period of a $\mathrm{f}_{1}(\mathrm{x})+\mathrm{bf}_{2}(\mathrm{x}) \leq \mathrm{LCM}\left\{\mathrm{T}_{1}, \mathrm{~T}_{2}\right\}$	

Kinds of Functions :

- One-one/ May one Functions :

A function $f: A \rightarrow B$ is said to be one-one if different elements of A have their different images in B.

Thus
f is one-one $\Leftrightarrow\left\{\begin{array}{ccc}\mathrm{a} \neq \mathrm{b} & \Rightarrow \mathrm{f}(\mathrm{a}) \neq \mathrm{f}(\mathrm{b}) \\ \mathrm{f}(\mathrm{a})=\mathrm{f}(\mathrm{b}) & \text { or } & \\ \Rightarrow & \mathrm{a}=\mathrm{b}\end{array}\right.$
A function which is not one-one is called many one. Thus if f is many one then atleast two different elements have same f-image.

- Onto/Into Functions: A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be onto if range of $f=$ codomain of f

Thus f is onto $\Leftrightarrow \mathrm{f}(\mathrm{A})=\mathrm{B}$

Hence $f: A \rightarrow B$ is onto if every element of B (co-domain) has its f-preimage in A (domain).

A function which is not onto is named as into function. Thus $f: A \rightarrow B$ is into if $f(A) \neq B$. i.e., if there exists atleast one element in codomain of f which has no preimage in domain.

Note:

Total number of functions: If A and B are finite sets containing m and n elements respectively, then

- total number of functions which can be defined from A to $\mathrm{B}=\mathrm{n}^{\mathrm{m}}$.
- total number of one-one functions from A to B

$$
=\left\{\begin{array}{ccc}
{ }^{n} p_{m} & \text { if } & m \leq n \\
0 & \text { if } & m>n
\end{array}\right.
$$

- total number of onto functions from A to B (if m $\geq \mathrm{n}$) = total number of different n groups of m elements.

Composite of Functions :

Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ be two functions, then the composite of the functions f and g denoted by gof, is a function from A to C given by gof : $\mathrm{A} \rightarrow \mathrm{C}$, (gof) $(\mathrm{x})=\mathrm{g}[\mathrm{f}(\mathrm{x})]$.

Properties of Composite Function :

The following properties of composite functions can easily be established.

- Composite of functions is not commutative i.e.,

$$
\text { fog } \neq \text { gof }
$$

- Composite of functions is associative i.e.

$$
(\mathrm{fog}) \mathrm{oh}=\mathrm{fo}(\mathrm{goh})
$$

- Composite of two bijections is also a bijection.

Inverse Function :

If $f: A \rightarrow B$ is one-one onto, then the inverse of f i.e., f^{-1} is a function from B to A under which every $b \in B$ is associated to that $\mathrm{a} \in \mathrm{A}$ for which $\mathrm{f}(\mathrm{a})=\mathrm{b}$.

Thus $\quad \mathrm{f}^{-1}: \mathrm{B} \rightarrow \mathrm{A}$,

$$
\mathrm{f}^{-1}(\mathrm{~b})=\mathrm{a} \Leftrightarrow \mathrm{f}(\mathrm{a})=\mathrm{b}
$$

Domain and Range of some standard functions :

Function	Domain	Range
Polynomial function	R	R
Identity function x	R	R
Constant function c	R	\{c \}
Reciprocal function $1 / \mathrm{x}$	R_{0}	R_{0}
$\mathrm{x}^{2},\|\mathrm{x}\|$	R	$\mathrm{R}^{+} \cup\{0\}$
$\mathrm{x}^{3}, \mathrm{x}\|\mathrm{x}\|$	R	R
Signum function	R	$\{-1,0,1\}$
$\mathrm{x}+\mathrm{x} \mid$	R	$\mathrm{R}^{+} \cup\{0\}$
$\mathrm{x}-\mathrm{\|x\|}$	R	$\mathrm{R}^{-} \cup\{0\}$
[x]	R	Z
$\mathrm{x}-\mathrm{x}]$	R	[0, 1)
\sqrt{x}	$[0, \infty)$	$[0, \infty)$
a^{x}	R	R^{+}
$\log \mathrm{x}$	R^{+}	R
$\sin x$	R	[-1, 1]
$\cos \mathrm{x}$	R	[-1, 7]
$\tan \mathrm{x}$	$\mathrm{R}-\{ \pm \pi / 2, \pm 3 \pi / 2, \ldots\}$	R
$\cot \mathrm{x}$	$\mathrm{R}-\{0, \pm \pi . \pm 2 \pi, \ldots .$.	R
$\sec \mathrm{x}$	$\mathrm{R}-(\pm \pi / 2, \pm 3 \pi / 2, \ldots .$.	$\mathrm{R}-(-1,1)$
$\operatorname{cosec} \mathrm{x}$	$\mathrm{R}-\{0, \pm \pi, \pm 2 \pi, \ldots . .$.	$\mathrm{R}-(-1,1)$
$\sinh \mathrm{x}$	R	R
$\cosh \mathrm{x}$	R	$[1, \infty)$
$\tanh \mathrm{x}$	R	(-1, 1)
coth x	R_{0}	$\mathrm{R}-[1,-1]$
$\operatorname{sech} \mathrm{x}$	R	$(0,1]$
$\operatorname{cosech} \mathrm{x}$	R_{0}	R_{0}
$\sin ^{-1} x$	[-1, 1]	[- $\pi / 2, \pi / 2]$
$\cos ^{-1} \mathrm{x}$	$[-1,1]$	$[0, \pi]$
$\tan ^{-1} x$	R	($-\pi / 2, \pi / 2\}$
$\cot ^{-1} \mathrm{x}$	R	$(0, \pi)$
$\sec ^{-1} x$	$\mathrm{R}-(-1,1)$	$[0, \pi]-\{\pi / 2\}$
$\operatorname{cosec}^{-1} \mathrm{x}$	$\mathrm{R}-(-1,1)$	$(-\pi / 2, \pi / 2]-\{0\}$

