LCD

## Limits :

Theorems of Limits :
If $f(x)$ and $g(x)$ are two functions, then
(i) $\lim _{x \rightarrow a}[f(x) \pm g(x)]=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)$
(ii) $\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
(iii) $\lim _{x \rightarrow a}\left[\frac{f(x)}{g(x)}\right]=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ if $\lim _{x \rightarrow a} g(x) \neq 0$
(iv) $\lim _{x \rightarrow \mathrm{a}}[k f(x)]=k \lim _{x \rightarrow a} f(x)$, where $k$ is constant.
(v) $\lim _{x \rightarrow a} \sqrt{f(x)}=\sqrt{\lim _{x \rightarrow a} f(x)}$
(vi) $\lim _{x \rightarrow a}|f(x)|^{p / q}=\left(\lim _{x \rightarrow a} f(x)\right)^{p / q}$, where $p$ and $q$ are integers.

## Some important expansions :

(i) $\sin x=\left\{x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots\right\}$
(ii) $\cos x=\left\{1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots.\right\}$
(iii) $\sin \mathrm{hx}=\left\{\mathrm{x}+\frac{\mathrm{x}^{3}}{3!}+\frac{\mathrm{x}^{5}}{5!}+\ldots . \infty\right\}$
(iv) $\cosh x=\left\{1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots . \infty\right\}$
(v) $\tan x=\left\{x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\ldots.\right\}$
(vi) $\log (1+x)=\left\{x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots\right\}$
(vii) $\mathrm{e}^{\mathrm{x}}=\left\{1+\mathrm{x}+\frac{\mathrm{x}^{2}}{2!}+\frac{\mathrm{x}^{3}}{3!}+\ldots.\right\}$
(viii) $a^{x}=\left\{1+x \log a+\frac{x^{2}}{2!}(\log a)^{2}+\ldots.\right\}$
(ix) $(1-x)^{-1}=\left\{1+x+x^{2}+x^{3}+\ldots \ldots\right\}$
(x) $\sin ^{-1} x=\left\{x+\frac{1}{2} \cdot \frac{x^{3}}{3}+\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{x^{5}}{5}+\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{x^{7}}{7}+\ldots \ldots\right\}$
(xi) $\tan ^{-1} x=\left\{x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\ldots ..\right\}$

Some important Limits :
(i) $\lim _{x \rightarrow 0} \sin x=0$
(ii) $\lim _{x \rightarrow 0} \cos x=1$
(iii) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1=\lim _{x \rightarrow 0} \frac{x}{\sin x}$
(iv) $\lim _{x \rightarrow 0} \frac{\tan x}{x}=1=\lim _{x \rightarrow 0} \frac{x}{\tan x}$
(v) $\lim _{x \rightarrow 0} \frac{\log (1+x)}{x}=1$
(vi) $\lim _{x \rightarrow 0} e^{x}=1$
(vii) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$
(viii) $\lim _{x \rightarrow 0} \frac{a^{x}-1}{x}=\log _{e} a$
(ix) $\lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1}$
(x) $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e=\lim _{x \rightarrow-\infty}\left(1+\frac{1}{x}\right)^{x}$
(xi) $\lim _{x \rightarrow 0}(1+x)^{1 / x}=e$
(xii) $\lim _{x \rightarrow \infty}\left(1+\frac{a}{x}\right)^{x}=e^{a}$
(xiii) $\lim _{\mathrm{x} \rightarrow \infty} \mathrm{a}^{\mathrm{n}}= \begin{cases}\infty, & \text { if } \mathrm{a}>1 \\ 0, & \text { if } \mathrm{a}<1\end{cases}$
i.e. $\mathrm{a}^{\infty}=\infty$, if $\mathrm{a}>1$ and $\mathrm{a}^{\infty}=0$, if $\mathrm{a}<1$
(xiv) $\lim _{x \rightarrow 0} \frac{(1+x)^{n}-1}{x}=n$
(xv) $\lim _{x \rightarrow 0} \frac{\sin ^{-1} x}{x}=1=\lim _{x \rightarrow 0} \frac{\tan ^{-1} x}{x}$
(xvi) $\lim _{x \rightarrow \mathrm{a}} \sin ^{-1} \mathrm{x}=\sin ^{-1} \mathrm{a},|\mathrm{a}| \leq 1$
(xvii) $\lim _{x \rightarrow a} \cos ^{-1} x=\cos ^{-1} a,|a| \leq 1$
(xviii) $\lim _{\mathrm{x} \rightarrow \mathrm{a}} \tan ^{-1} \mathrm{x}=\tan ^{-1} \mathrm{a},-\infty<\mathrm{a}<\infty$
(xix) $\lim _{x \rightarrow e} \log _{e} x=1$
(xx) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=\frac{1}{2}$

Let $\lim _{x \rightarrow a} f(x)=\ell$ and $\lim _{x \rightarrow a} g(x)=m$, then
(xxi) $\lim _{x \rightarrow a}(f(x))^{g(x)}=\ell^{m}$
(xxii)If $f(x) \leq g(x)$ for every $x$ in the deleted neighbourhood (nbd) of a, then $\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)$.
(xxiii) If $f(x) \leq g(x) \leq h(x)$ for every $x$ in the deleted nbd of $a$ and $\lim _{x \rightarrow a} f(x)=\ell=\lim _{x \rightarrow a} h(x)$, then $\lim _{x \rightarrow a} g(x)=\ell$.
(xxiv) $\lim _{x \rightarrow a} \operatorname{fog}(x)=f\left(\lim _{x \rightarrow a} g(x)\right)=f(m)$

In particular (a) $\lim _{x \rightarrow a} \log f(x)=\log \left(\lim _{x \rightarrow a} f(x)\right)=\log \ell$
(b) $\lim _{x \rightarrow a} e^{f(x)}=e^{\lim _{x \rightarrow a} f(x)}=e^{\ell}$
(xxv) If $\lim _{x \rightarrow \mathrm{a}} \mathrm{f}(\mathrm{x})=+\infty$ or $-\infty$, then $\lim _{\mathrm{x} \rightarrow \mathrm{a}} \frac{1}{\mathrm{f}(\mathrm{x})}=0$.

## Evaluation of Limits (Working Rules) :

By factorisation : To evaluate $\lim _{x \rightarrow a} \frac{\phi(x)}{\psi(x)}$, factorise both $\phi(x)$ and $\psi(x)$, if possible, then cancel the common factor involving a from the numerator and the denominator. In the last obtain the limit by substituting a for x .
Evaluation by substitution : To evaluate $\lim _{x \rightarrow a} f(x)$, put $\mathrm{x}=\mathrm{a}+\mathrm{h}$ and simplify the numerator and denominator, then cancel the common factor involving $h$ in the numerator and denominator. In the last obtain the limit by substituting $\mathrm{h}=0$.
By L - Hospital's rule : Apply L-Hospital's rule to the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$.

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow a} \frac{f^{n}(x)}{g^{n}(x)}
$$

By using expansion formulae : The expansion formulae can also be used with advantage in simplification and evaluation of limits.
By rationalisation : In case if numerator or denominator (or both) are irrational functions,
rationalisation of numerator or denominator (or both) helps to obtain the limit of the function.
Continuity :
$f(x)$ is continuous at $x=a$ if $\lim _{x \rightarrow a} f(x)$ exists and is equal to $f(a)$ i.e. if $\lim _{x \rightarrow a^{-}} f(x)=f(a)=\lim _{x \rightarrow a^{+}} f(x)$.
Discontinuous functions : A function f is said to be discontinuous at a point a of its domain D if is not continuous there at. The point a is then called a point of discontinuity of the function. The discontinuity may arise due to any of the following situations:
(a) $\lim _{x \rightarrow a+} f(x)$ or $\lim _{x \rightarrow a-} f(x)$ of both may not exist.
(b) $\lim _{x \rightarrow a+} f(x)$ as well as $\lim _{x \rightarrow a-} f(x)$ may exist but are unequal.
(c) $\lim _{x \rightarrow a+} f(x)$ as well as $\lim _{x \rightarrow a-} f(x)$ both may exist but either of the two or both may not be equal to $f(a)$.
We classify the point of discontinuity according to various situations discussed above.
Removable discontinuity : A function f is said to have removable discontinuity at $x=a$ if
$\lim _{x \rightarrow a-} f(x)=\lim _{x \rightarrow a+} f(x)$ but their common value is not equal to $f(a)$. Such a discontinuity can be removed by assigning a suitable value to the function $f$ at $x=a$.
Discontinuity of the first kind : A function $f$ is said to have a discontinuity of the first kind at $x=a$ if $\lim _{x \rightarrow a-} f(x)$ and $\lim _{x \rightarrow a+} f(x)$ both exist but are not equal.
f is said to have a discontinuity of the first kind from the left at $x=a$ if $\lim _{x \rightarrow a-} f(x)$ exists but not equal to $f(a)$. Discontinuity of the first kind from the right is similarly defined.
Discontinuity of second kind : A function $f$ is said to have a discontinuity of the second kind at $x=a$ if neither $\lim _{x \rightarrow a_{-}} f(x)$ nor $\lim _{x \rightarrow a+} f(x)$ exists.
f if said to have discontinuity of the second kind from the left at $x=a$ if $\lim _{x \rightarrow a-} f(x)$ does not exist.

Similarly, if $\lim _{x \rightarrow a+} f(x)$ does not exist, then $f$ is said to have discontinuity of the second kind from the right at $\mathrm{x}=\mathrm{a}$.

## Differentiability :

$f(x)$ is said to be differentiable at $x=a$ if $R^{\prime}=L^{\prime}$
i.e. $\underset{h \rightarrow 0}{\operatorname{Lt}} \frac{f(a+h)-f(a)}{h}=\underset{h \rightarrow 0}{\operatorname{Lt}} \frac{f(a-h)-f(a)}{-h}$

Note : We discuss $R$, $L$ or $R^{\prime}, L^{\prime}$ at $x=a$ when the function is defined differently for $\mathrm{x}>\mathrm{a}$ or $\mathrm{x}<\mathrm{a}$ and at $x=a$.

