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Limits : 
 Theorems of Limits :  
 If f(x) and g(x) are two functions, then  
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, where k is constant. 
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→ , where p and q are 

integers. 
Some important expansions : 
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(ii) cos x = 
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(iii) sin h x = 
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(iv) cos h x = 
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(v) tan x = 
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(vi) log(1 + x) = 
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(vii) ex = 
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(viii) ax = 
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(ix) (1 – x)–1 = {1 + x + x2 + x3 + ......} 

(x) sin–1x = 
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(xi) tan–1x = 
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Some important Limits : 
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 i.e. a∞ = ∞, if a > 1 and a∞ = 0, if a < 1 
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(xvi) xsinlim 1
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 = sin–1a, |a| ≤ 1 
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 = tan–1a, – ∞ < a < ∞ 
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Evaluation of Limits (Working Rules) : 

 By factorisation : To evaluate 
)x(
)x(lim

ax ψ
φ

→
, factorise 

both φ(x) and ψ(x), if possible, then cancel the 
common factor involving a from the numerator and 
the denominator. In the last obtain the limit by 
substituting a for x. 

 Evaluation by substitution : To evaluate )x(flim
ax→

, 

put x = a + h and simplify the numerator and 
denominator, then cancel the common factor 
involving h in the numerator and denominator. In the 
last obtain the limit by substituting h = 0. 

 By L – Hospital's rule : Apply L-Hospital's rule to 

the form 
0
0  or 

∞
∞ . 
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 By using expansion formulae : The expansion 
formulae can also be used with advantage in 
simplification and evaluation of limits. 

 By rationalisation : In case if numerator or 
denominator (or both) are irrational functions, 

rationalisation of numerator or denominator (or both) 
helps to obtain the limit of the function. 

Continuity : 
 f(x) is continuous at x = a if )x(flim
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exists and is 
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–ax→
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 Discontinuous functions : A function f is said to be 
discontinuous at a point a of its domain D if is not 
continuous there at. The point a is then called a point 
of discontinuity of the function. The discontinuity  
may arise due to any of the following situations: 
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both may exist but 

either of the two or both may not be equal to f(a). 
 We classify the point of discontinuity according to 

various situations discussed above. 
 Removable discontinuity : A function f is said to 

have removable discontinuity at x = a if  
 )x(flim

ax −→
= )x(flim

ax +→
but their common value is not 

equal to f(a). Such a discontinuity can be removed by 
assigning a suitable value to the function f at x = a. 

 Discontinuity of the first kind : A function f is said 
to have a discontinuity of the first kind at x = a if 
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both exist but are not equal. 

 f is said to have a discontinuity of the first kind from 
the left at x = a if )x(flim
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exists but not equal to 

f(a). Discontinuity of the first kind from the right is 
similarly defined. 

 Discontinuity of second kind : A function f is said 
to have a discontinuity of the second kind at x = a if 
neither )x(flim

ax −→
nor )x(flim

ax +→
exists. 

 f if said to have discontinuity of the second kind from 
the left at x = a if )x(flim

ax −→
does not exist. 

 Similarly, if )x(flim
ax +→

does not exist, then f is said to 

have discontinuity of the second kind from the right 
at x = a. 

Differentiability :  
 f(x) is said to be differentiable at x = a if R´ = L´ 

 i.e. 
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 Note : We discuss R, L or R´, L´ at x = a when the 
function is defined differently for x > a or x < a and 
at x = a. 
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