COMPLEX NUMBERS

- $\sqrt{-1}$ is denoted by ' i ' and is pronounced as 'iota'. $i=\sqrt{-1} \Rightarrow i^{2}=-1, i^{3}=-i, i^{4}=1$.
- If $a, b \in R$ and $i=\sqrt{-1}$ then $a+i b$ is called a complex number. The complex number $a+i b$ is also denoted by the ordered pair (a, b)
- If $z=a+i b$ is a complex number, then :
(i) a is called the real part of z and we write

$$
\operatorname{Re}(\mathrm{z})=\mathrm{a}
$$

(ii) b is called the imaginary part of z and we write

$$
\operatorname{Im}(z)=b
$$

- Two complex numbers z_{1} and z_{2} are said to be equal complex numbers if $\operatorname{Re}\left(z_{1}\right)=\operatorname{Re}\left(z_{2}\right)$ and $\operatorname{Im}\left(z_{1}\right)=$ $\operatorname{Im}\left(\mathrm{Z}_{2}\right)$.
- If $\mathrm{z}=\mathrm{x}+$ iy is a non zero complex number, then $1 / \mathrm{z}$ is called the multiplicative inverse of z.
- If $x+$ iy is a complex number, then the complex number x - iy is called the conjugate of the complex number $x+$ iy and we write $\overline{x+i y}=x-i y$.
- Algebra of Complex Numbers
(i) Addition : $(\mathrm{a}+\mathrm{ib})+(\mathrm{c}+\mathrm{id})=(\mathrm{a}+\mathrm{c})+\mathrm{i}(\mathrm{b}+\mathrm{d})$
(ii) Subtraction :
$(\mathrm{a}+\mathrm{ib})-(\mathrm{c}+\mathrm{id})=(\mathrm{a}-\mathrm{c})+\mathrm{i}(\mathrm{b}-\mathrm{d})$
(iii) Multiplication :

$$
(a+i b)+(c+i d)=(a c-b d)+i(a b+b c)
$$

(iv) Division by a non-zero complex number :

$$
\frac{a+i b}{c+i d}=\frac{a c+b d}{c^{2}+d^{2}}+i \frac{b c-a d}{c^{2}+d^{2}},(c+i d) \neq 0
$$

- Properties: If z_{1}, z_{2} are complex numbers, then
(i) $\overline{\left(\overline{\mathrm{Z}}_{1}\right)}=\mathrm{z}_{1}$
(ii) $z+\bar{z}=2 \operatorname{Re}(z)$
(iii) $z-\bar{z}=2 i \operatorname{Im}(z)$
(iv) $z=\bar{z}$ iff z is purely real
(v) $z=\bar{z}$ iff z is purely imaginary
(vi) $\overline{z_{1}+z_{2}}=\bar{z}_{1}+\bar{z}_{2}$
(vii) $\overline{\mathrm{z}_{1}-\mathrm{z}_{2}}=\overline{\mathrm{z}}_{1}-\overline{\mathrm{z}}_{2}$
(viii) $\overline{z_{1} \cdot z_{2}}=\bar{z}_{1} \cdot \bar{z}_{2}$
(ix) $\overline{\left(\frac{\mathrm{z}_{1}}{\mathrm{z}_{2}}\right)}=\frac{\overline{\mathrm{z}}_{1}}{\overline{\mathrm{z}}_{2}}$ provided $\mathrm{z}_{2} \neq 0$
- If $x+$ iy is a complex number, then the non-negative ral number $\sqrt{x^{2}+y^{2}}$ is called the modulus of the complex number $x+$ iy and write

$$
|x+i y|=\sqrt{x^{2}+y^{2}}
$$

Properties: If z_{1}, z_{2} are complex numbers, then
(i) $\left|z_{1}\right|=0$ iff $z_{1}=0$
(ii) $\left|z_{1}\right|=\left|\bar{z}_{1}\right|=\left|-z_{1}\right|$
(iii) $-\left|z_{1}\right| \leq \operatorname{Re}\left(z_{1}\right) \leq\left|z_{1}\right|$
(iv) $-\left|\mathrm{z}_{1}\right| \leq \operatorname{Im}\left(\mathrm{z}_{1}\right) \leq\left|\mathrm{z}_{1}\right|$
(v) $\left|\mathrm{z}_{1} \overline{\mathrm{z}}_{1}\right|=\left|\mathrm{z}_{1}\right|^{2}$
(vi) $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
(vii) $\left|z_{1}-z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right|$
(viii) $\left|z_{1} \quad z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
(ix) $\left|\frac{\mathrm{z}_{1}}{\mathrm{z}_{2}}\right|=\frac{\left|\mathrm{z}_{1}\right|}{\left|\mathrm{z}_{2}\right|}$, provided $\mathrm{z}_{2} \neq 0$
(x) $\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2 \operatorname{Re}\left(z_{1} \bar{z}_{2}\right)$
(xi) $\left|z_{1}-z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-2 \operatorname{Re}\left(z_{1} \bar{z}_{2}\right)$
(xi) $\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}=2\left[\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right]$.

- De Moivre's Theorem
(i) If n is any integer (positive or negative), then $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$
(ii) If n is a rational number, then the value or one of the values of $(\cos \theta+i \sin \theta)^{n}$ is $\cos n \theta+i \sin n \theta$
- Euler's Formula
$e^{i \theta}=\cos \theta+i \sin \theta$ and $e^{-i \theta}=\cos \theta-i \sin \theta$
- Square root of complex number

Square root of $z=a+i b$ are given by
$\pm\left[\sqrt{\left(\frac{|z|+a}{2}\right)}+i \sqrt{\left(\frac{|z|-a}{2}\right)}\right]$ for $b>0$ and
$\pm\left[\sqrt{\left(\frac{|z|+a}{2}\right)}-i \sqrt{\left(\frac{|z|-a}{2}\right)}\right]$ for $b<0$.

- If $\omega=\frac{-1+i \sqrt{3}}{2}$, then the cube roots of unity are $1, \omega$ and ω^{2}. We have:
(i) $1+\omega+\omega^{2}=0$
(ii) $\omega^{3}=1$
- Let $\mathrm{z}=\mathrm{x}+$ iy be any complex number.

Let $z=r(\cos \theta+i \sin \theta)$ where $r>0$.
$\therefore \mathrm{x}=\mathrm{r} \cos \theta$ and $\mathrm{y}=\mathrm{r} \sin \theta$
$\therefore \mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{r}^{2}$
$\Rightarrow \quad r=\sqrt{x^{2}+y^{2}} \quad(\because r>0)$
$\therefore \cos \theta=\frac{\mathrm{x}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}}$ and $\sin \theta=\frac{\mathrm{y}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}}$
The value of θ is found by solving these equations. θ is called the argument (or amplitude) of z.
If $-\mathrm{p}<\theta \leq \pi$, then θ is called the principal argument of z .

- Identification of θ -

x	y	$\arg (\mathrm{z})$	Interval of θ
+	+	θ	$\left(0<\theta<\frac{\pi}{2}\right)$
+	-	$-\theta$	$\left(\frac{-\pi}{2}<\theta<0\right)$
-	+	$(\pi-\theta)$	$\left(\frac{\pi}{2}<\theta<\pi\right)$
-	-	$-(\pi-\theta)$	$\left(-\pi<\theta<\frac{-\pi}{2}\right)$

- If z_{1} and z_{2} are two complex numbers then
(i) $\left|z_{1}-z_{2}\right|$ is the distance between the points with affixes z_{1} and z_{2}.
(ii) $\frac{m z_{2}+n z_{1}}{m+n}$ is the affix of the point dividing the line joining the points with affixes z_{1} and z_{2} in the ratio $\mathrm{m}: \mathrm{n}$ internally.
(iii) $\frac{m z_{2}-n z_{1}}{m-n}$ is the affix of the point dividing the line joining the points with affixes z_{1} and z_{2} in the ratio $\mathrm{m}: \mathrm{n}$ externally where $\mathrm{m} \neq \mathrm{n}$.
(iv) If z_{1}, z_{2}, z_{3} are the affixes of the vertices of a triangle then the affix of its centroid is $\frac{z_{1}+z_{2}+z_{3}}{3}$.
(v) $\mathrm{z}=\mathrm{tz}_{1}+(1-\mathrm{t}) \mathrm{z}_{2}$ is the equation of the line joining points with affixes z_{1} and z_{2}. Here ' t ' is a parameter.
(vi) $\frac{z-z_{1}}{z_{2}-z_{1}}=\frac{\bar{z}-\bar{z}_{1}}{\bar{z}_{2}-\bar{z}_{1}}$ is the equation of the line joining points with affixes z_{1} and z_{2}.
- Three points with affixes z_{1}, z_{2}, z_{3} are collinear if
$\left|\begin{array}{ccc}\mathrm{z}_{1} & \overline{\mathrm{z}}_{1} & 1 \\ \mathrm{z}_{2} & \overline{\mathrm{z}}_{2} & 1 \\ \mathrm{z}_{3} & \overline{\mathrm{z}}_{3} & 1\end{array}\right|=0$.
- The general equation of a straight line is $\bar{a} z+a \bar{z}+b=0$, where b is any real number.
(i) $\left|z-z_{1}\right|<r$ represents the circle with centre z_{1} and radius r.
(ii) $\left|\mathrm{z}-\mathrm{z}_{1}\right|<\mathrm{r}$ represents the interior of the circle with centre z_{1} and radius r .
- $\left|\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{z}-\mathrm{z}_{1}}\right|=\mathrm{k}$ represents a circle line which is the perpendicular bisector of the line segment joining points with affixes z_{1} and z_{2}.
- $\left(\mathrm{z}-\mathrm{z}_{1}\right)\left(\overline{\mathrm{z}}-\overline{\mathrm{z}}_{2}\right)+\left(\overline{\mathrm{z}}-\overline{\mathrm{z}}_{1}\right)+\left(\mathrm{z}-\mathrm{z}_{2}\right)=0$ represents the circle with line joining points with affixes z_{1} and z_{2} as a diameter.
- $\left|z-z_{1}\right|+\left|z-z_{2}\right|=2 k, k \in R^{+}$represents the ellipse with foci at points with affixes z_{1} and z_{2}.
- If z_{1}, z_{2}, z_{3} be the affixes of the points A, B, C respectively, then the angle between $A B$ and $A C$ is given by $\arg \left(\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right)$.
- If $z_{1}, z_{2}, z_{3}, z_{4}$ are the affixes of the points A, B, C, D respectively, then the angle between AB and CD is given by $\arg \left(\frac{z_{2}-z_{1}}{z_{4}-z_{3}}\right)$.
- nth roots of a complex number

Let $\mathrm{z}=\mathrm{r}(\cos \theta+\mathrm{i} \sin \theta), \mathrm{r}>0$ be any complex number. nth root $\mathrm{oz}=\mathrm{z}^{1 / n}$

$$
=\mathrm{r}^{1 / \mathrm{n}}\left(\cos \frac{2 \mathrm{k} \pi+\theta}{\mathrm{n}}+\mathrm{i} \sin \frac{2 \mathrm{k} \pi+\theta}{\mathrm{n}}\right)
$$

where $\mathrm{k}=0,1,2, \ldots \ldots \ldots, \mathrm{n}-1$.
There are n distinct values and sum of all these values is 0 .

- Logarithm of a complex number

Let $\mathrm{z}=\mathrm{re}^{\mathrm{i} \theta}$ be any complex number.
Then $\log \mathrm{z}=\log \mathrm{re}^{\mathrm{i} \theta}=\log \mathrm{r}+\log \mathrm{e}^{\mathrm{i} \theta}$

$$
=\log \mathrm{r}+\mathrm{i} \theta \log \mathrm{e}=\log \mathrm{r}+\mathrm{i} \theta
$$

$\therefore \quad \log \mathrm{z}=\log |\mathrm{z}|+\mathrm{i} \operatorname{amp}(\mathrm{z})$.

