MANISH KALIA'S MATHEMATICS CLASSES 9878146388

COMPLEX NUMBERS

- $\sqrt{-1}$ is denoted by 'i' and is pronounced as 'iota'. $i = \sqrt{-1} \implies i^2 = -1, i^3 = -i, i^4 = 1.$
- If a, b \in R and i = $\sqrt{-1}$ then a + ib is called a complex number. The complex number a + ib is also denoted by the ordered pair (a, b)
- If z = a + ib is a complex number, then :

(i) a is called the real part of z and we write

$$\operatorname{Re}(z) = a$$

(ii) b is called the imaginary part of z and we write

Im(z) = b

- Two complex numbers z_1 and z_2 are said to be equal complex numbers if Re $(z_1) = \text{Re}(z_2)$ and Im $(z_1) =$ $\operatorname{Im}(z_2)$.
- If z = x + iy is a non zero complex number, then 1/zis called the multiplicative inverse of z.
- If x + iy is a complex number, then the complex number x - iy is called the conjugate of the complex number x + iy and we write x + iy = x - iy.

Algebra of Complex Numbers

(i) Addition: (a + ib) + (c + id) = (a + c) + i(b + d)

(ii) Subtraction :

$$(a + ib) - (c + id) = (a - c) + i(b - d)$$

(iii) Multiplication :

$$(a + ib) + (c + id) = (ac - bd) + i(ab + bc)$$

(iv) Division by a non-zero complex number :

$$\frac{a+ib}{c+id} = \frac{ac+bd}{c^2+d^2} + i\frac{bc-ad}{c^2+d^2}, (c+id) \neq 0$$

Properties : If z_1 , z_2 are complex numbers, then

(i)
$$\overline{(\overline{z}_1)} = z_1$$

(ii) $z + \overline{z} = 2 \text{ Re } (z)$
(iii) $z - \overline{z} = 2i \text{ Im } (z)$
(iv) $z = \overline{z}$ iff z is purely real
(v) $z = \overline{z}$ iff z is purely imaginary
(vi) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
(vii) $\overline{z_1 - z_2} = \overline{z_1} - \overline{z_2}$
(viii) $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$

(ix)
$$\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z}_1}{\overline{z}_2}$$
 provided $z_2 \neq 0$

If x + iy is a complex number, then the non-negative ral number $\sqrt{x^2 + y^2}$ is called the modulus of the complex number x + iy and write

$$|\mathbf{x} + \mathbf{i}\mathbf{y}| = \sqrt{\mathbf{x}^2 + \mathbf{y}^2}$$

Properties : If z_1 , z_2 are complex numbers, then (i) $|z_1| = 0$ iff $z_1 = 0$ (ii) $|z_1| = |\overline{z}_1| = |-z_1|$ $(iii) - |z_1| \le \text{Re}(z_1) \le |z_1|$ $(iv) - |z_1| \le Im(z_1) \le |z_1|$ (v) $|z_1 \overline{z}_1| = |z_1|^2$ $(vi) |z_1 + z_2| \le |z_1| + |z_2|$ $(vii) |z_1 - z_2| \ge |z_1| - |z_2|$

(viii)
$$|z_1 | z_2| = |z_1| |z_2|$$

(ix)
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$
, provided $z_2 \neq 0$
(x) $|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + 2 \operatorname{Re}(z_1 \overline{z}_2)$
(xi) $|z_1 - z_2|^2 = |z_1|^2 + |z_2|^2 - 2 \operatorname{Re}(z_1 \overline{z}_2)$
(xi) $|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2 [|z_1|^2 + |z_2|^2]$.

- De Moivre's Theorem
 - (i) If n is any integer (positive or negative), then

 $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$

(ii) If n is a rational number, then the value or one of the values of $(\cos \theta + i \sin \theta)^n$ is $\cos n\theta + i \sin n\theta$

- Euler's Formula $e^{i\theta} = \cos \theta + i \sin \theta$ and $e^{-i\theta} = \cos \theta - i \sin \theta$
- Square root of complex number Square root of z = a + ib are given by

$$\pm \left[\sqrt{\left(\frac{|z|+a}{2}\right)} + i\sqrt{\left(\frac{|z|-a}{2}\right)} \right] \text{ for } b > 0 \text{ and}$$
$$\pm \left[\sqrt{\left(\frac{|z|+a}{2}\right)} - i\sqrt{\left(\frac{|z|-a}{2}\right)} \right] \text{ for } b < 0.$$

MANISH KALIA'S MATHEMATICS CLASSES 9878146388

• If $\omega = \frac{-1 + i\sqrt{3}}{2}$, then the cube roots of unity are 1, ω and ω^2 . We have:

and ω . we have.

- (i) $1 + \omega + \omega^2 = 0$ (ii) $\omega^3 = 1$
- Let z = x + iy be any complex number. Let $z = r (\cos \theta + i \sin \theta)$ where r > 0.

$$\therefore x = r \cos \theta \text{ and } y = r \sin \theta$$

$$\therefore x^{2} + y^{2} = r^{2}$$

$$\Rightarrow r = \sqrt{x^{2} + y^{2}} \qquad (\because r > 0)$$

$$\therefore \cos \theta = \frac{x}{\sqrt{x^2 + y^2}}$$
 and $\sin \theta = \frac{y}{\sqrt{x^2 + y^2}}$

The value of θ is found by solving these equations. θ is called the argument (or amplitude) of z.

If $-p < \theta \le \pi$, then θ is called the principal argument of z.

• Identification of θ –

Х	у	arg(z)	Interval of θ
+	+	θ	$\left(0 < \theta < \frac{\pi}{2}\right)$
+	_	θ	$\left(\frac{-\pi}{2} < \theta < 0\right)$
_	+	$(\pi - \theta)$	$\left(\frac{\pi}{2} < \theta < \pi\right)$
_	_	$-(\pi - \theta)$	$\left(-\pi < \theta < \frac{-\pi}{2}\right)$

• If z_1 and z_2 are two complex numbers then

(i) $|z_1 - z_2|$ is the distance between the points with affixes z_1 and z_2 .

(ii) $\frac{mz_2 + nz_1}{m+n}$ is the affix of the point dividing the line joining the points with affines z and z in the

line joining the points with affixes z_1 and z_2 in the ratio m : n internally.

(iii) $\frac{mz_2 - nz_1}{m - n}$ is the affix of the point dividing the

line joining the points with affixes z_1 and z_2 in the ratio m : n externally where m \neq n.

(iv) If z_1 , z_2 , z_3 are the affixes of the vertices of a triangle then the affix of its centroid is $\frac{z_1 + z_2 + z_3}{3}$.

(v) $z = tz_1 + (1 - t)z_2$ is the equation of the line joining points with affixes z_1 and z_2 . Here 't' is a parameter.

(vi) $\frac{z-z_1}{z_2-z_1} = \frac{\overline{z}-\overline{z}_1}{\overline{z}_2-\overline{z}_1}$ is the equation of the line

joining points with affixes z_1 and z_2 .

• Three points with affixes z_1 , z_2 , z_3 are collinear if

$$\begin{vmatrix} z_1 & \overline{z}_1 & 1 \\ z_2 & \overline{z}_2 & 1 \\ z_3 & \overline{z}_3 & 1 \end{vmatrix} = 0$$

• The general equation of a straight line is

 $\overline{a}z + a\overline{z} + b = 0$, where b is any real number.

 (i) | z − z₁ | < r represents the circle with centre z₁ and radius r.

(ii) $|z - z_1| < r$ represents the interior of the circle with centre z_1 and radius r.

• $\left| \frac{z - z_1}{z - z_1} \right|$ = k represents a circle line which is the

perpendicular bisector of the line segment joining points with affixes z_1 and z_2 .

- $(z z_1) (\overline{z} \overline{z}_2) + (\overline{z} \overline{z}_1) + (z z_2) = 0$ represents the circle with line joining points with affixes z_1 and z_2 as a diameter.
- $|z z_1| + |z z_2| = 2k, k \in \mathbb{R}^+$ represents the ellipse with foci at points with affixes z_1 and z_2 .
- If z_1 , z_2 , z_3 be the affixes of the points A, B, C respectively, then the angle between AB and AC is $(z_2 - z_1)$

given by arg
$$\left(\frac{z_3 - z_1}{z_2 - z_1}\right)$$
.

• If z₁, z₂, z₃, z₄ are the affixes of the points A, B, C, D respectively, then the angle between AB and CD is

given by arg
$$\left(\frac{z_2 - z_1}{z_4 - z_3}\right)$$
.

• nth roots of a complex number

Let $z = r (\cos \theta + i \sin \theta)$, r > 0 be any complex number. nth root o $z = z^{1/n}$

$$= r^{1/n} \left(\cos \frac{2k\pi + \theta}{n} + i \sin \frac{2k\pi + \theta}{n} \right),$$

where $k = 0, 1, 2, \dots, n - 1$.

There are n distinct values and sum of all these values is 0.

Logarithm of a complex number

Let $z = re^{i\theta}$ be any complex number.

Then $\log z = \log re^{i\theta} = \log r + \log e^{i\theta}$

$$= \log r + i\theta \log e = \log r + i\theta.$$

$$\therefore \quad \log z = \log |z| + i \operatorname{amp} (z).$$